Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy
Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards...
Ausführliche Beschreibung
Autor*in: |
Sigfredo Fuentes [verfasserIn] Yin Y. Wong [verfasserIn] Claudia Gonzalez Viejo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Foods - MDPI AG, 2013, 9(2020), 7, p 903 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:7, p 903 |
Links: |
---|
DOI / URN: |
10.3390/foods9070903 |
---|
Katalog-ID: |
DOAJ044350309 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044350309 | ||
003 | DE-627 | ||
005 | 20240412224203.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/foods9070903 |2 doi | |
035 | |a (DE-627)DOAJ044350309 | ||
035 | |a (DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Sigfredo Fuentes |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. | ||
650 | 4 | |a entomophagy | |
650 | 4 | |a neophobia | |
650 | 4 | |a alternative protein source | |
650 | 4 | |a emotions | |
650 | 4 | |a emojis | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Yin Y. Wong |e verfasserin |4 aut | |
700 | 0 | |a Claudia Gonzalez Viejo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Foods |d MDPI AG, 2013 |g 9(2020), 7, p 903 |w (DE-627)737287632 |w (DE-600)2704223-6 |x 23048158 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:7, p 903 |
856 | 4 | 0 | |u https://doi.org/10.3390/foods9070903 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2304-8158/9/7/903 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2304-8158 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 7, p 903 |
author_variant |
s f sf y y w yyw c g v cgv |
---|---|
matchkey_str |
article:23048158:2020----::oivsvboercadahnlannmdlntotisnoyneoinlepnef |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/foods9070903 doi (DE-627)DOAJ044350309 (DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552 DE-627 ger DE-627 rakwb eng TP1-1185 Sigfredo Fuentes verfasserin aut Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. entomophagy neophobia alternative protein source emotions emojis Chemical technology Yin Y. Wong verfasserin aut Claudia Gonzalez Viejo verfasserin aut In Foods MDPI AG, 2013 9(2020), 7, p 903 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:7, p 903 https://doi.org/10.3390/foods9070903 kostenfrei https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552 kostenfrei https://www.mdpi.com/2304-8158/9/7/903 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 7, p 903 |
spelling |
10.3390/foods9070903 doi (DE-627)DOAJ044350309 (DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552 DE-627 ger DE-627 rakwb eng TP1-1185 Sigfredo Fuentes verfasserin aut Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. entomophagy neophobia alternative protein source emotions emojis Chemical technology Yin Y. Wong verfasserin aut Claudia Gonzalez Viejo verfasserin aut In Foods MDPI AG, 2013 9(2020), 7, p 903 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:7, p 903 https://doi.org/10.3390/foods9070903 kostenfrei https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552 kostenfrei https://www.mdpi.com/2304-8158/9/7/903 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 7, p 903 |
allfields_unstemmed |
10.3390/foods9070903 doi (DE-627)DOAJ044350309 (DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552 DE-627 ger DE-627 rakwb eng TP1-1185 Sigfredo Fuentes verfasserin aut Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. entomophagy neophobia alternative protein source emotions emojis Chemical technology Yin Y. Wong verfasserin aut Claudia Gonzalez Viejo verfasserin aut In Foods MDPI AG, 2013 9(2020), 7, p 903 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:7, p 903 https://doi.org/10.3390/foods9070903 kostenfrei https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552 kostenfrei https://www.mdpi.com/2304-8158/9/7/903 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 7, p 903 |
allfieldsGer |
10.3390/foods9070903 doi (DE-627)DOAJ044350309 (DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552 DE-627 ger DE-627 rakwb eng TP1-1185 Sigfredo Fuentes verfasserin aut Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. entomophagy neophobia alternative protein source emotions emojis Chemical technology Yin Y. Wong verfasserin aut Claudia Gonzalez Viejo verfasserin aut In Foods MDPI AG, 2013 9(2020), 7, p 903 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:7, p 903 https://doi.org/10.3390/foods9070903 kostenfrei https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552 kostenfrei https://www.mdpi.com/2304-8158/9/7/903 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 7, p 903 |
allfieldsSound |
10.3390/foods9070903 doi (DE-627)DOAJ044350309 (DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552 DE-627 ger DE-627 rakwb eng TP1-1185 Sigfredo Fuentes verfasserin aut Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. entomophagy neophobia alternative protein source emotions emojis Chemical technology Yin Y. Wong verfasserin aut Claudia Gonzalez Viejo verfasserin aut In Foods MDPI AG, 2013 9(2020), 7, p 903 (DE-627)737287632 (DE-600)2704223-6 23048158 nnns volume:9 year:2020 number:7, p 903 https://doi.org/10.3390/foods9070903 kostenfrei https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552 kostenfrei https://www.mdpi.com/2304-8158/9/7/903 kostenfrei https://doaj.org/toc/2304-8158 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 7, p 903 |
language |
English |
source |
In Foods 9(2020), 7, p 903 volume:9 year:2020 number:7, p 903 |
sourceStr |
In Foods 9(2020), 7, p 903 volume:9 year:2020 number:7, p 903 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
entomophagy neophobia alternative protein source emotions emojis Chemical technology |
isfreeaccess_bool |
true |
container_title |
Foods |
authorswithroles_txt_mv |
Sigfredo Fuentes @@aut@@ Yin Y. Wong @@aut@@ Claudia Gonzalez Viejo @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
737287632 |
id |
DOAJ044350309 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044350309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412224203.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/foods9070903</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044350309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sigfredo Fuentes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entomophagy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neophobia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alternative protein source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emotions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emojis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yin Y. Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Gonzalez Viejo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Foods</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 7, p 903</subfield><subfield code="w">(DE-627)737287632</subfield><subfield code="w">(DE-600)2704223-6</subfield><subfield code="x">23048158</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:7, p 903</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/foods9070903</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-8158/9/7/903</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-8158</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">7, p 903</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sigfredo Fuentes |
spellingShingle |
Sigfredo Fuentes misc TP1-1185 misc entomophagy misc neophobia misc alternative protein source misc emotions misc emojis misc Chemical technology Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy |
authorStr |
Sigfredo Fuentes |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287632 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
23048158 |
topic_title |
TP1-1185 Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy entomophagy neophobia alternative protein source emotions emojis |
topic |
misc TP1-1185 misc entomophagy misc neophobia misc alternative protein source misc emotions misc emojis misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc entomophagy misc neophobia misc alternative protein source misc emotions misc emojis misc Chemical technology |
topic_browse |
misc TP1-1185 misc entomophagy misc neophobia misc alternative protein source misc emotions misc emojis misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Foods |
hierarchy_parent_id |
737287632 |
hierarchy_top_title |
Foods |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287632 (DE-600)2704223-6 |
title |
Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy |
ctrlnum |
(DE-627)DOAJ044350309 (DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552 |
title_full |
Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy |
author_sort |
Sigfredo Fuentes |
journal |
Foods |
journalStr |
Foods |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Sigfredo Fuentes Yin Y. Wong Claudia Gonzalez Viejo |
container_volume |
9 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Sigfredo Fuentes |
doi_str_mv |
10.3390/foods9070903 |
author2-role |
verfasserin |
title_sort |
non-invasive biometrics and machine learning modeling to obtain sensory and emotional responses from panelists during entomophagy |
callnumber |
TP1-1185 |
title_auth |
Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy |
abstract |
Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. |
abstractGer |
Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. |
abstract_unstemmed |
Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 903 |
title_short |
Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy |
url |
https://doi.org/10.3390/foods9070903 https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552 https://www.mdpi.com/2304-8158/9/7/903 https://doaj.org/toc/2304-8158 |
remote_bool |
true |
author2 |
Yin Y. Wong Claudia Gonzalez Viejo |
author2Str |
Yin Y. Wong Claudia Gonzalez Viejo |
ppnlink |
737287632 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/foods9070903 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T22:33:53.321Z |
_version_ |
1803598989438746624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044350309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412224203.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/foods9070903</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044350309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ04df7831ed7d46c09ffda0aa2e221552</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sigfredo Fuentes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Invasive Biometrics and Machine Learning Modeling to Obtain Sensory and Emotional Responses from Panelists during Entomophagy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Insect-based food products offer a more sustainable and environmentally friendly source of protein compared to plant and animal proteins. Entomophagy is less familiar for Non-Asian cultural backgrounds and is associated with emotions such as disgust and anger, which is the basis of neophobia towards these products. Tradicional sensory evaluation may offer some insights about the liking, visual, aroma, and tasting appreciation, and purchase intention of insect-based food products. However, more robust methods are required to assess these complex interactions with the emotional and subconscious responses related to cultural background. This study focused on the sensory and biometric responses of consumers towards insect-based food snacks and machine learning modeling. Results showed higher liking and emotional responses for those samples containing insects as ingredients (not visible) and with no insects. A lower liking and negative emotional responses were related to samples showing the insects. Artificial neural network models to assess liking based on biometric responses showed high accuracy for different cultures (<92%). A general model for all cultures with an 89% accuracy was also achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entomophagy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neophobia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alternative protein source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emotions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emojis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yin Y. Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Gonzalez Viejo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Foods</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 7, p 903</subfield><subfield code="w">(DE-627)737287632</subfield><subfield code="w">(DE-600)2704223-6</subfield><subfield code="x">23048158</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:7, p 903</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/foods9070903</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/04df7831ed7d46c09ffda0aa2e221552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-8158/9/7/903</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-8158</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">7, p 903</subfield></datafield></record></collection>
|
score |
7.400522 |