The zebra finch neuropeptidome: prediction, detection and expression
<p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interacti...
Ausführliche Beschreibung
Autor*in: |
Annangudi Suresh P [verfasserIn] Southey Bruce R [verfasserIn] London Sarah E [verfasserIn] Xie Fang [verfasserIn] Amare Andinet [verfasserIn] Rodriguez-Zas Sandra L [verfasserIn] Clayton David F [verfasserIn] Sweedler Jonathan V [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Übergeordnetes Werk: |
In: BMC Biology - BMC, 2003, 8(2010), 1, p 28 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2010 ; number:1, p 28 |
Links: |
---|
DOI / URN: |
10.1186/1741-7007-8-28 |
---|
Katalog-ID: |
DOAJ044447922 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044447922 | ||
003 | DE-627 | ||
005 | 20230503021450.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1741-7007-8-28 |2 doi | |
035 | |a (DE-627)DOAJ044447922 | ||
035 | |a (DE-599)DOAJ486081ee9c624132b8616c082d670c80 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Annangudi Suresh P |e verfasserin |4 aut | |
245 | 1 | 4 | |a The zebra finch neuropeptidome: prediction, detection and expression |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< | ||
653 | 0 | |a Biology (General) | |
700 | 0 | |a Southey Bruce R |e verfasserin |4 aut | |
700 | 0 | |a London Sarah E |e verfasserin |4 aut | |
700 | 0 | |a Xie Fang |e verfasserin |4 aut | |
700 | 0 | |a Amare Andinet |e verfasserin |4 aut | |
700 | 0 | |a Rodriguez-Zas Sandra L |e verfasserin |4 aut | |
700 | 0 | |a Clayton David F |e verfasserin |4 aut | |
700 | 0 | |a Sweedler Jonathan V |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Biology |d BMC, 2003 |g 8(2010), 1, p 28 |w (DE-627)377757241 |w (DE-600)2133020-7 |x 17417007 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2010 |g number:1, p 28 |
856 | 4 | 0 | |u https://doi.org/10.1186/1741-7007-8-28 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/486081ee9c624132b8616c082d670c80 |z kostenfrei |
856 | 4 | 0 | |u http://www.biomedcentral.com/1741-7007/8/28 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1741-7007 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2010 |e 1, p 28 |
author_variant |
a s p asp s b r sbr l s e lse x f xf a a aa r z s l rzsl c d f cdf s j v sjv |
---|---|
matchkey_str |
article:17417007:2010----::hzbaicnuoetdmpeitodtc |
hierarchy_sort_str |
2010 |
callnumber-subject-code |
QH |
publishDate |
2010 |
allfields |
10.1186/1741-7007-8-28 doi (DE-627)DOAJ044447922 (DE-599)DOAJ486081ee9c624132b8616c082d670c80 DE-627 ger DE-627 rakwb eng QH301-705.5 Annangudi Suresh P verfasserin aut The zebra finch neuropeptidome: prediction, detection and expression 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< Biology (General) Southey Bruce R verfasserin aut London Sarah E verfasserin aut Xie Fang verfasserin aut Amare Andinet verfasserin aut Rodriguez-Zas Sandra L verfasserin aut Clayton David F verfasserin aut Sweedler Jonathan V verfasserin aut In BMC Biology BMC, 2003 8(2010), 1, p 28 (DE-627)377757241 (DE-600)2133020-7 17417007 nnns volume:8 year:2010 number:1, p 28 https://doi.org/10.1186/1741-7007-8-28 kostenfrei https://doaj.org/article/486081ee9c624132b8616c082d670c80 kostenfrei http://www.biomedcentral.com/1741-7007/8/28 kostenfrei https://doaj.org/toc/1741-7007 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2010 1, p 28 |
spelling |
10.1186/1741-7007-8-28 doi (DE-627)DOAJ044447922 (DE-599)DOAJ486081ee9c624132b8616c082d670c80 DE-627 ger DE-627 rakwb eng QH301-705.5 Annangudi Suresh P verfasserin aut The zebra finch neuropeptidome: prediction, detection and expression 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< Biology (General) Southey Bruce R verfasserin aut London Sarah E verfasserin aut Xie Fang verfasserin aut Amare Andinet verfasserin aut Rodriguez-Zas Sandra L verfasserin aut Clayton David F verfasserin aut Sweedler Jonathan V verfasserin aut In BMC Biology BMC, 2003 8(2010), 1, p 28 (DE-627)377757241 (DE-600)2133020-7 17417007 nnns volume:8 year:2010 number:1, p 28 https://doi.org/10.1186/1741-7007-8-28 kostenfrei https://doaj.org/article/486081ee9c624132b8616c082d670c80 kostenfrei http://www.biomedcentral.com/1741-7007/8/28 kostenfrei https://doaj.org/toc/1741-7007 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2010 1, p 28 |
allfields_unstemmed |
10.1186/1741-7007-8-28 doi (DE-627)DOAJ044447922 (DE-599)DOAJ486081ee9c624132b8616c082d670c80 DE-627 ger DE-627 rakwb eng QH301-705.5 Annangudi Suresh P verfasserin aut The zebra finch neuropeptidome: prediction, detection and expression 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< Biology (General) Southey Bruce R verfasserin aut London Sarah E verfasserin aut Xie Fang verfasserin aut Amare Andinet verfasserin aut Rodriguez-Zas Sandra L verfasserin aut Clayton David F verfasserin aut Sweedler Jonathan V verfasserin aut In BMC Biology BMC, 2003 8(2010), 1, p 28 (DE-627)377757241 (DE-600)2133020-7 17417007 nnns volume:8 year:2010 number:1, p 28 https://doi.org/10.1186/1741-7007-8-28 kostenfrei https://doaj.org/article/486081ee9c624132b8616c082d670c80 kostenfrei http://www.biomedcentral.com/1741-7007/8/28 kostenfrei https://doaj.org/toc/1741-7007 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2010 1, p 28 |
allfieldsGer |
10.1186/1741-7007-8-28 doi (DE-627)DOAJ044447922 (DE-599)DOAJ486081ee9c624132b8616c082d670c80 DE-627 ger DE-627 rakwb eng QH301-705.5 Annangudi Suresh P verfasserin aut The zebra finch neuropeptidome: prediction, detection and expression 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< Biology (General) Southey Bruce R verfasserin aut London Sarah E verfasserin aut Xie Fang verfasserin aut Amare Andinet verfasserin aut Rodriguez-Zas Sandra L verfasserin aut Clayton David F verfasserin aut Sweedler Jonathan V verfasserin aut In BMC Biology BMC, 2003 8(2010), 1, p 28 (DE-627)377757241 (DE-600)2133020-7 17417007 nnns volume:8 year:2010 number:1, p 28 https://doi.org/10.1186/1741-7007-8-28 kostenfrei https://doaj.org/article/486081ee9c624132b8616c082d670c80 kostenfrei http://www.biomedcentral.com/1741-7007/8/28 kostenfrei https://doaj.org/toc/1741-7007 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2010 1, p 28 |
allfieldsSound |
10.1186/1741-7007-8-28 doi (DE-627)DOAJ044447922 (DE-599)DOAJ486081ee9c624132b8616c082d670c80 DE-627 ger DE-627 rakwb eng QH301-705.5 Annangudi Suresh P verfasserin aut The zebra finch neuropeptidome: prediction, detection and expression 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< Biology (General) Southey Bruce R verfasserin aut London Sarah E verfasserin aut Xie Fang verfasserin aut Amare Andinet verfasserin aut Rodriguez-Zas Sandra L verfasserin aut Clayton David F verfasserin aut Sweedler Jonathan V verfasserin aut In BMC Biology BMC, 2003 8(2010), 1, p 28 (DE-627)377757241 (DE-600)2133020-7 17417007 nnns volume:8 year:2010 number:1, p 28 https://doi.org/10.1186/1741-7007-8-28 kostenfrei https://doaj.org/article/486081ee9c624132b8616c082d670c80 kostenfrei http://www.biomedcentral.com/1741-7007/8/28 kostenfrei https://doaj.org/toc/1741-7007 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2010 1, p 28 |
language |
English |
source |
In BMC Biology 8(2010), 1, p 28 volume:8 year:2010 number:1, p 28 |
sourceStr |
In BMC Biology 8(2010), 1, p 28 volume:8 year:2010 number:1, p 28 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biology (General) |
isfreeaccess_bool |
true |
container_title |
BMC Biology |
authorswithroles_txt_mv |
Annangudi Suresh P @@aut@@ Southey Bruce R @@aut@@ London Sarah E @@aut@@ Xie Fang @@aut@@ Amare Andinet @@aut@@ Rodriguez-Zas Sandra L @@aut@@ Clayton David F @@aut@@ Sweedler Jonathan V @@aut@@ |
publishDateDaySort_date |
2010-01-01T00:00:00Z |
hierarchy_top_id |
377757241 |
id |
DOAJ044447922 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044447922</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503021450.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1741-7007-8-28</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044447922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ486081ee9c624132b8616c082d670c80</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Annangudi Suresh P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The zebra finch neuropeptidome: prediction, detection and expression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Southey Bruce R</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">London Sarah E</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xie Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amare Andinet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rodriguez-Zas Sandra L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Clayton David F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sweedler Jonathan V</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Biology</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">8(2010), 1, p 28</subfield><subfield code="w">(DE-627)377757241</subfield><subfield code="w">(DE-600)2133020-7</subfield><subfield code="x">17417007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1, p 28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1741-7007-8-28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/486081ee9c624132b8616c082d670c80</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1741-7007/8/28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1741-7007</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2010</subfield><subfield code="e">1, p 28</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Annangudi Suresh P |
spellingShingle |
Annangudi Suresh P misc QH301-705.5 misc Biology (General) The zebra finch neuropeptidome: prediction, detection and expression |
authorStr |
Annangudi Suresh P |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377757241 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
17417007 |
topic_title |
QH301-705.5 The zebra finch neuropeptidome: prediction, detection and expression |
topic |
misc QH301-705.5 misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc Biology (General) |
topic_browse |
misc QH301-705.5 misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Biology |
hierarchy_parent_id |
377757241 |
hierarchy_top_title |
BMC Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377757241 (DE-600)2133020-7 |
title |
The zebra finch neuropeptidome: prediction, detection and expression |
ctrlnum |
(DE-627)DOAJ044447922 (DE-599)DOAJ486081ee9c624132b8616c082d670c80 |
title_full |
The zebra finch neuropeptidome: prediction, detection and expression |
author_sort |
Annangudi Suresh P |
journal |
BMC Biology |
journalStr |
BMC Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
author_browse |
Annangudi Suresh P Southey Bruce R London Sarah E Xie Fang Amare Andinet Rodriguez-Zas Sandra L Clayton David F Sweedler Jonathan V |
container_volume |
8 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Annangudi Suresh P |
doi_str_mv |
10.1186/1741-7007-8-28 |
author2-role |
verfasserin |
title_sort |
zebra finch neuropeptidome: prediction, detection and expression |
callnumber |
QH301-705.5 |
title_auth |
The zebra finch neuropeptidome: prediction, detection and expression |
abstract |
<p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< |
abstractGer |
<p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< |
abstract_unstemmed |
<p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p< |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 28 |
title_short |
The zebra finch neuropeptidome: prediction, detection and expression |
url |
https://doi.org/10.1186/1741-7007-8-28 https://doaj.org/article/486081ee9c624132b8616c082d670c80 http://www.biomedcentral.com/1741-7007/8/28 https://doaj.org/toc/1741-7007 |
remote_bool |
true |
author2 |
Southey Bruce R London Sarah E Xie Fang Amare Andinet Rodriguez-Zas Sandra L Clayton David F Sweedler Jonathan V |
author2Str |
Southey Bruce R London Sarah E Xie Fang Amare Andinet Rodriguez-Zas Sandra L Clayton David F Sweedler Jonathan V |
ppnlink |
377757241 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1741-7007-8-28 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T23:03:27.026Z |
_version_ |
1803600849301143552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044447922</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503021450.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1741-7007-8-28</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044447922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ486081ee9c624132b8616c082d670c80</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Annangudi Suresh P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The zebra finch neuropeptidome: prediction, detection and expression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Among songbirds, the zebra finch (<it<Taeniopygia guttata</it<) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions.</p< <p<Results</p< <p<Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; <it<in situ </it<hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally.</p< <p<Conclusions</p< <p<The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Southey Bruce R</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">London Sarah E</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xie Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amare Andinet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rodriguez-Zas Sandra L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Clayton David F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sweedler Jonathan V</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Biology</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">8(2010), 1, p 28</subfield><subfield code="w">(DE-627)377757241</subfield><subfield code="w">(DE-600)2133020-7</subfield><subfield code="x">17417007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1, p 28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1741-7007-8-28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/486081ee9c624132b8616c082d670c80</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1741-7007/8/28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1741-7007</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2010</subfield><subfield code="e">1, p 28</subfield></datafield></record></collection>
|
score |
7.400776 |