A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading
Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attri...
Ausführliche Beschreibung
Autor*in: |
Qin Rong [verfasserIn] Zhonghui Zhao [verfasserIn] Xiaomeng Hou [verfasserIn] Zhizhong Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
reactive powder concrete (RPC) |
---|
Übergeordnetes Werk: |
In: Buildings - MDPI AG, 2012, 12(2022), 4, p 462 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:4, p 462 |
Links: |
---|
DOI / URN: |
10.3390/buildings12040462 |
---|
Katalog-ID: |
DOAJ044461585 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044461585 | ||
003 | DE-627 | ||
005 | 20240414115230.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/buildings12040462 |2 doi | |
035 | |a (DE-627)DOAJ044461585 | ||
035 | |a (DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TH1-9745 | |
100 | 0 | |a Qin Rong |e verfasserin |4 aut | |
245 | 1 | 2 | |a A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. | ||
650 | 4 | |a blast loading | |
650 | 4 | |a reactive powder concrete (RPC) | |
650 | 4 | |a P-I curve | |
650 | 4 | |a equivalent single-degree-of-freedom (ESDOF) | |
650 | 4 | |a numerical simulation | |
653 | 0 | |a Building construction | |
700 | 0 | |a Zhonghui Zhao |e verfasserin |4 aut | |
700 | 0 | |a Xiaomeng Hou |e verfasserin |4 aut | |
700 | 0 | |a Zhizhong Jiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Buildings |d MDPI AG, 2012 |g 12(2022), 4, p 462 |w (DE-627)718622251 |w (DE-600)2661539-3 |x 20755309 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:4, p 462 |
856 | 4 | 0 | |u https://doi.org/10.3390/buildings12040462 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-5309/12/4/462 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-5309 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 4, p 462 |
author_variant |
q r qr z z zz x h xh z j zj |
---|---|
matchkey_str |
article:20755309:2022----::pdarmprahopeitndnmcepnendmgassmnoratvpwroce |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TH |
publishDate |
2022 |
allfields |
10.3390/buildings12040462 doi (DE-627)DOAJ044461585 (DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3 DE-627 ger DE-627 rakwb eng TH1-9745 Qin Rong verfasserin aut A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. blast loading reactive powder concrete (RPC) P-I curve equivalent single-degree-of-freedom (ESDOF) numerical simulation Building construction Zhonghui Zhao verfasserin aut Xiaomeng Hou verfasserin aut Zhizhong Jiang verfasserin aut In Buildings MDPI AG, 2012 12(2022), 4, p 462 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:12 year:2022 number:4, p 462 https://doi.org/10.3390/buildings12040462 kostenfrei https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3 kostenfrei https://www.mdpi.com/2075-5309/12/4/462 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2022 4, p 462 |
spelling |
10.3390/buildings12040462 doi (DE-627)DOAJ044461585 (DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3 DE-627 ger DE-627 rakwb eng TH1-9745 Qin Rong verfasserin aut A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. blast loading reactive powder concrete (RPC) P-I curve equivalent single-degree-of-freedom (ESDOF) numerical simulation Building construction Zhonghui Zhao verfasserin aut Xiaomeng Hou verfasserin aut Zhizhong Jiang verfasserin aut In Buildings MDPI AG, 2012 12(2022), 4, p 462 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:12 year:2022 number:4, p 462 https://doi.org/10.3390/buildings12040462 kostenfrei https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3 kostenfrei https://www.mdpi.com/2075-5309/12/4/462 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2022 4, p 462 |
allfields_unstemmed |
10.3390/buildings12040462 doi (DE-627)DOAJ044461585 (DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3 DE-627 ger DE-627 rakwb eng TH1-9745 Qin Rong verfasserin aut A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. blast loading reactive powder concrete (RPC) P-I curve equivalent single-degree-of-freedom (ESDOF) numerical simulation Building construction Zhonghui Zhao verfasserin aut Xiaomeng Hou verfasserin aut Zhizhong Jiang verfasserin aut In Buildings MDPI AG, 2012 12(2022), 4, p 462 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:12 year:2022 number:4, p 462 https://doi.org/10.3390/buildings12040462 kostenfrei https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3 kostenfrei https://www.mdpi.com/2075-5309/12/4/462 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2022 4, p 462 |
allfieldsGer |
10.3390/buildings12040462 doi (DE-627)DOAJ044461585 (DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3 DE-627 ger DE-627 rakwb eng TH1-9745 Qin Rong verfasserin aut A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. blast loading reactive powder concrete (RPC) P-I curve equivalent single-degree-of-freedom (ESDOF) numerical simulation Building construction Zhonghui Zhao verfasserin aut Xiaomeng Hou verfasserin aut Zhizhong Jiang verfasserin aut In Buildings MDPI AG, 2012 12(2022), 4, p 462 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:12 year:2022 number:4, p 462 https://doi.org/10.3390/buildings12040462 kostenfrei https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3 kostenfrei https://www.mdpi.com/2075-5309/12/4/462 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2022 4, p 462 |
allfieldsSound |
10.3390/buildings12040462 doi (DE-627)DOAJ044461585 (DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3 DE-627 ger DE-627 rakwb eng TH1-9745 Qin Rong verfasserin aut A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. blast loading reactive powder concrete (RPC) P-I curve equivalent single-degree-of-freedom (ESDOF) numerical simulation Building construction Zhonghui Zhao verfasserin aut Xiaomeng Hou verfasserin aut Zhizhong Jiang verfasserin aut In Buildings MDPI AG, 2012 12(2022), 4, p 462 (DE-627)718622251 (DE-600)2661539-3 20755309 nnns volume:12 year:2022 number:4, p 462 https://doi.org/10.3390/buildings12040462 kostenfrei https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3 kostenfrei https://www.mdpi.com/2075-5309/12/4/462 kostenfrei https://doaj.org/toc/2075-5309 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 12 2022 4, p 462 |
language |
English |
source |
In Buildings 12(2022), 4, p 462 volume:12 year:2022 number:4, p 462 |
sourceStr |
In Buildings 12(2022), 4, p 462 volume:12 year:2022 number:4, p 462 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
blast loading reactive powder concrete (RPC) P-I curve equivalent single-degree-of-freedom (ESDOF) numerical simulation Building construction |
isfreeaccess_bool |
true |
container_title |
Buildings |
authorswithroles_txt_mv |
Qin Rong @@aut@@ Zhonghui Zhao @@aut@@ Xiaomeng Hou @@aut@@ Zhizhong Jiang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718622251 |
id |
DOAJ044461585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044461585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414115230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/buildings12040462</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044461585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TH1-9745</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qin Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blast loading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive powder concrete (RPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-I curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equivalent single-degree-of-freedom (ESDOF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Building construction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhonghui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaomeng Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhizhong Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Buildings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 4, p 462</subfield><subfield code="w">(DE-627)718622251</subfield><subfield code="w">(DE-600)2661539-3</subfield><subfield code="x">20755309</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 462</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/buildings12040462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-5309/12/4/462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-5309</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 462</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qin Rong |
spellingShingle |
Qin Rong misc TH1-9745 misc blast loading misc reactive powder concrete (RPC) misc P-I curve misc equivalent single-degree-of-freedom (ESDOF) misc numerical simulation misc Building construction A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading |
authorStr |
Qin Rong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718622251 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TH1-9745 |
illustrated |
Not Illustrated |
issn |
20755309 |
topic_title |
TH1-9745 A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading blast loading reactive powder concrete (RPC) P-I curve equivalent single-degree-of-freedom (ESDOF) numerical simulation |
topic |
misc TH1-9745 misc blast loading misc reactive powder concrete (RPC) misc P-I curve misc equivalent single-degree-of-freedom (ESDOF) misc numerical simulation misc Building construction |
topic_unstemmed |
misc TH1-9745 misc blast loading misc reactive powder concrete (RPC) misc P-I curve misc equivalent single-degree-of-freedom (ESDOF) misc numerical simulation misc Building construction |
topic_browse |
misc TH1-9745 misc blast loading misc reactive powder concrete (RPC) misc P-I curve misc equivalent single-degree-of-freedom (ESDOF) misc numerical simulation misc Building construction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Buildings |
hierarchy_parent_id |
718622251 |
hierarchy_top_title |
Buildings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718622251 (DE-600)2661539-3 |
title |
A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading |
ctrlnum |
(DE-627)DOAJ044461585 (DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3 |
title_full |
A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading |
author_sort |
Qin Rong |
journal |
Buildings |
journalStr |
Buildings |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Qin Rong Zhonghui Zhao Xiaomeng Hou Zhizhong Jiang |
container_volume |
12 |
class |
TH1-9745 |
format_se |
Elektronische Aufsätze |
author-letter |
Qin Rong |
doi_str_mv |
10.3390/buildings12040462 |
author2-role |
verfasserin |
title_sort |
p-i diagram approach for predicting dynamic response and damage assessment of reactive power concrete columns subjected to blast loading |
callnumber |
TH1-9745 |
title_auth |
A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading |
abstract |
Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. |
abstractGer |
Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. |
abstract_unstemmed |
Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
4, p 462 |
title_short |
A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading |
url |
https://doi.org/10.3390/buildings12040462 https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3 https://www.mdpi.com/2075-5309/12/4/462 https://doaj.org/toc/2075-5309 |
remote_bool |
true |
author2 |
Zhonghui Zhao Xiaomeng Hou Zhizhong Jiang |
author2Str |
Zhonghui Zhao Xiaomeng Hou Zhizhong Jiang |
ppnlink |
718622251 |
callnumber-subject |
TH - Building Construction |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/buildings12040462 |
callnumber-a |
TH1-9745 |
up_date |
2024-07-03T23:07:15.706Z |
_version_ |
1803601089090551808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044461585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414115230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/buildings12040462</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044461585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1d0d3aeac2144ecdbb4600fe22cbe8d3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TH1-9745</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qin Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A P-I Diagram Approach for Predicting Dynamic Response and Damage Assessment of Reactive Power Concrete Columns Subjected to Blast Loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reactive power concrete (RPC) possesses high compressive strength, toughness, and durability, and it is increasingly being used in important buildings. The column is an important load-bearing member of a building, and its failure under blast loading results in building collapse. Based on these attributes, the dynamic response and the degree of damage to the RPC column are critical in assessing building performance. Due to the lack of methods, the progress of the study is relatively slow. In order to solve these issues, the dynamic response of the RPC column is studied based on the equivalent single-degree-of-freedom method and P-I curve in this paper. During the model validation phase, the deformation of the RPC column predicted using the ESDOF approach correlates well with the explosion simulation and test results. The P-I curves of the typical RPC column were also determined, and some data were analyzed to evaluate the influence of different key parameters, such as slenderness ratio, cross-sectional dimension, and axial compression ratio. The results show that the RPC column is susceptible to shear, bending, and bending-shear failure in the impulse load region, quasi-static load region, and dynamic load region, respectively. The cross-sectional dimension and slenderness ratio exhibit the greatest influence on P-I curves among the five parameters. With the increasing cross-sectional dimension and slenderness ratio, the overpressure asymptote of bending response increases by 4.2 times and decreases by about 57.3%. Furthermore, combined with the P-I curve features, it is found that reasonably increasing the cross-sectional dimensions and RPC strength could simultaneously improve the comprehensive anti-blast performance of RPC columns. This study was carried out to obtain the effect of the five parameters mentioned above on the degree of damage under different blast loading, which can provide a valuable reference for the dynamic response of RPC columns.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blast loading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive powder concrete (RPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">P-I curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equivalent single-degree-of-freedom (ESDOF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Building construction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhonghui Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaomeng Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhizhong Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Buildings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 4, p 462</subfield><subfield code="w">(DE-627)718622251</subfield><subfield code="w">(DE-600)2661539-3</subfield><subfield code="x">20755309</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 462</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/buildings12040462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1d0d3aeac2144ecdbb4600fe22cbe8d3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-5309/12/4/462</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-5309</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 462</subfield></datafield></record></collection>
|
score |
7.400732 |