Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study
Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broil...
Ausführliche Beschreibung
Autor*in: |
Nara R.B. Cônsolo [verfasserIn] Linda M. Samuelsson [verfasserIn] Luís C.G.S. Barbosa [verfasserIn] Tatiana Monaretto [verfasserIn] Tiago B. Moraes [verfasserIn] Vicente L.M. Buarque [verfasserIn] Angel R. Higuera-Padilla [verfasserIn] Luiz A. Colnago [verfasserIn] Saulo L. Silva [verfasserIn] Marlon M. Reis [verfasserIn] André C. Fonseca [verfasserIn] Cristiane S. da S. Araújo [verfasserIn] Bruna G. de S. Leite [verfasserIn] Fabricia A. Roque [verfasserIn] Lúcio F. Araújo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Poultry Science - Elsevier, 2020, 99(2020), 11, Seite 6247-6257 |
---|---|
Übergeordnetes Werk: |
volume:99 ; year:2020 ; number:11 ; pages:6247-6257 |
Links: |
---|
DOI / URN: |
10.1016/j.psj.2020.06.066 |
---|
Katalog-ID: |
DOAJ04469900X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04469900X | ||
003 | DE-627 | ||
005 | 20230308083616.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.psj.2020.06.066 |2 doi | |
035 | |a (DE-627)DOAJ04469900X | ||
035 | |a (DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SF1-1100 | |
100 | 0 | |a Nara R.B. Cônsolo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. | ||
650 | 4 | |a chicken breast myopathy | |
650 | 4 | |a metabolomics | |
650 | 4 | |a NMR spectroscopy | |
650 | 4 | |a TD-NMR relaxometry | |
650 | 4 | |a water mobilization | |
653 | 0 | |a Animal culture | |
700 | 0 | |a Linda M. Samuelsson |e verfasserin |4 aut | |
700 | 0 | |a Luís C.G.S. Barbosa |e verfasserin |4 aut | |
700 | 0 | |a Tatiana Monaretto |e verfasserin |4 aut | |
700 | 0 | |a Tiago B. Moraes |e verfasserin |4 aut | |
700 | 0 | |a Vicente L.M. Buarque |e verfasserin |4 aut | |
700 | 0 | |a Angel R. Higuera-Padilla |e verfasserin |4 aut | |
700 | 0 | |a Luiz A. Colnago |e verfasserin |4 aut | |
700 | 0 | |a Saulo L. Silva |e verfasserin |4 aut | |
700 | 0 | |a Marlon M. Reis |e verfasserin |4 aut | |
700 | 0 | |a André C. Fonseca |e verfasserin |4 aut | |
700 | 0 | |a Cristiane S. da S. Araújo |e verfasserin |4 aut | |
700 | 0 | |a Bruna G. de S. Leite |e verfasserin |4 aut | |
700 | 0 | |a Fabricia A. Roque |e verfasserin |4 aut | |
700 | 0 | |a Lúcio F. Araújo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Poultry Science |d Elsevier, 2020 |g 99(2020), 11, Seite 6247-6257 |w (DE-627)320569535 |w (DE-600)2016331-9 |x 15253171 |7 nnns |
773 | 1 | 8 | |g volume:99 |g year:2020 |g number:11 |g pages:6247-6257 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.psj.2020.06.066 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0032579120304491 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0032-5791 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 99 |j 2020 |e 11 |h 6247-6257 |
author_variant |
n r c nrc l m s lms l c b lcb t m tm t b m tbm v l b vlb a r h p arhp l a c lac s l s sls m m r mmr a c f acf c s d s a csdsa b g d s l bgdsl f a r far l f a lfa |
---|---|
matchkey_str |
article:15253171:2020----::hrceiainfhcemsldsreshogmtblmcptwynlssnw |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
SF |
publishDate |
2020 |
allfields |
10.1016/j.psj.2020.06.066 doi (DE-627)DOAJ04469900X (DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56 DE-627 ger DE-627 rakwb eng SF1-1100 Nara R.B. Cônsolo verfasserin aut Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. chicken breast myopathy metabolomics NMR spectroscopy TD-NMR relaxometry water mobilization Animal culture Linda M. Samuelsson verfasserin aut Luís C.G.S. Barbosa verfasserin aut Tatiana Monaretto verfasserin aut Tiago B. Moraes verfasserin aut Vicente L.M. Buarque verfasserin aut Angel R. Higuera-Padilla verfasserin aut Luiz A. Colnago verfasserin aut Saulo L. Silva verfasserin aut Marlon M. Reis verfasserin aut André C. Fonseca verfasserin aut Cristiane S. da S. Araújo verfasserin aut Bruna G. de S. Leite verfasserin aut Fabricia A. Roque verfasserin aut Lúcio F. Araújo verfasserin aut In Poultry Science Elsevier, 2020 99(2020), 11, Seite 6247-6257 (DE-627)320569535 (DE-600)2016331-9 15253171 nnns volume:99 year:2020 number:11 pages:6247-6257 https://doi.org/10.1016/j.psj.2020.06.066 kostenfrei https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56 kostenfrei http://www.sciencedirect.com/science/article/pii/S0032579120304491 kostenfrei https://doaj.org/toc/0032-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 99 2020 11 6247-6257 |
spelling |
10.1016/j.psj.2020.06.066 doi (DE-627)DOAJ04469900X (DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56 DE-627 ger DE-627 rakwb eng SF1-1100 Nara R.B. Cônsolo verfasserin aut Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. chicken breast myopathy metabolomics NMR spectroscopy TD-NMR relaxometry water mobilization Animal culture Linda M. Samuelsson verfasserin aut Luís C.G.S. Barbosa verfasserin aut Tatiana Monaretto verfasserin aut Tiago B. Moraes verfasserin aut Vicente L.M. Buarque verfasserin aut Angel R. Higuera-Padilla verfasserin aut Luiz A. Colnago verfasserin aut Saulo L. Silva verfasserin aut Marlon M. Reis verfasserin aut André C. Fonseca verfasserin aut Cristiane S. da S. Araújo verfasserin aut Bruna G. de S. Leite verfasserin aut Fabricia A. Roque verfasserin aut Lúcio F. Araújo verfasserin aut In Poultry Science Elsevier, 2020 99(2020), 11, Seite 6247-6257 (DE-627)320569535 (DE-600)2016331-9 15253171 nnns volume:99 year:2020 number:11 pages:6247-6257 https://doi.org/10.1016/j.psj.2020.06.066 kostenfrei https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56 kostenfrei http://www.sciencedirect.com/science/article/pii/S0032579120304491 kostenfrei https://doaj.org/toc/0032-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 99 2020 11 6247-6257 |
allfields_unstemmed |
10.1016/j.psj.2020.06.066 doi (DE-627)DOAJ04469900X (DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56 DE-627 ger DE-627 rakwb eng SF1-1100 Nara R.B. Cônsolo verfasserin aut Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. chicken breast myopathy metabolomics NMR spectroscopy TD-NMR relaxometry water mobilization Animal culture Linda M. Samuelsson verfasserin aut Luís C.G.S. Barbosa verfasserin aut Tatiana Monaretto verfasserin aut Tiago B. Moraes verfasserin aut Vicente L.M. Buarque verfasserin aut Angel R. Higuera-Padilla verfasserin aut Luiz A. Colnago verfasserin aut Saulo L. Silva verfasserin aut Marlon M. Reis verfasserin aut André C. Fonseca verfasserin aut Cristiane S. da S. Araújo verfasserin aut Bruna G. de S. Leite verfasserin aut Fabricia A. Roque verfasserin aut Lúcio F. Araújo verfasserin aut In Poultry Science Elsevier, 2020 99(2020), 11, Seite 6247-6257 (DE-627)320569535 (DE-600)2016331-9 15253171 nnns volume:99 year:2020 number:11 pages:6247-6257 https://doi.org/10.1016/j.psj.2020.06.066 kostenfrei https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56 kostenfrei http://www.sciencedirect.com/science/article/pii/S0032579120304491 kostenfrei https://doaj.org/toc/0032-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 99 2020 11 6247-6257 |
allfieldsGer |
10.1016/j.psj.2020.06.066 doi (DE-627)DOAJ04469900X (DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56 DE-627 ger DE-627 rakwb eng SF1-1100 Nara R.B. Cônsolo verfasserin aut Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. chicken breast myopathy metabolomics NMR spectroscopy TD-NMR relaxometry water mobilization Animal culture Linda M. Samuelsson verfasserin aut Luís C.G.S. Barbosa verfasserin aut Tatiana Monaretto verfasserin aut Tiago B. Moraes verfasserin aut Vicente L.M. Buarque verfasserin aut Angel R. Higuera-Padilla verfasserin aut Luiz A. Colnago verfasserin aut Saulo L. Silva verfasserin aut Marlon M. Reis verfasserin aut André C. Fonseca verfasserin aut Cristiane S. da S. Araújo verfasserin aut Bruna G. de S. Leite verfasserin aut Fabricia A. Roque verfasserin aut Lúcio F. Araújo verfasserin aut In Poultry Science Elsevier, 2020 99(2020), 11, Seite 6247-6257 (DE-627)320569535 (DE-600)2016331-9 15253171 nnns volume:99 year:2020 number:11 pages:6247-6257 https://doi.org/10.1016/j.psj.2020.06.066 kostenfrei https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56 kostenfrei http://www.sciencedirect.com/science/article/pii/S0032579120304491 kostenfrei https://doaj.org/toc/0032-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 99 2020 11 6247-6257 |
allfieldsSound |
10.1016/j.psj.2020.06.066 doi (DE-627)DOAJ04469900X (DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56 DE-627 ger DE-627 rakwb eng SF1-1100 Nara R.B. Cônsolo verfasserin aut Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. chicken breast myopathy metabolomics NMR spectroscopy TD-NMR relaxometry water mobilization Animal culture Linda M. Samuelsson verfasserin aut Luís C.G.S. Barbosa verfasserin aut Tatiana Monaretto verfasserin aut Tiago B. Moraes verfasserin aut Vicente L.M. Buarque verfasserin aut Angel R. Higuera-Padilla verfasserin aut Luiz A. Colnago verfasserin aut Saulo L. Silva verfasserin aut Marlon M. Reis verfasserin aut André C. Fonseca verfasserin aut Cristiane S. da S. Araújo verfasserin aut Bruna G. de S. Leite verfasserin aut Fabricia A. Roque verfasserin aut Lúcio F. Araújo verfasserin aut In Poultry Science Elsevier, 2020 99(2020), 11, Seite 6247-6257 (DE-627)320569535 (DE-600)2016331-9 15253171 nnns volume:99 year:2020 number:11 pages:6247-6257 https://doi.org/10.1016/j.psj.2020.06.066 kostenfrei https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56 kostenfrei http://www.sciencedirect.com/science/article/pii/S0032579120304491 kostenfrei https://doaj.org/toc/0032-5791 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 99 2020 11 6247-6257 |
language |
English |
source |
In Poultry Science 99(2020), 11, Seite 6247-6257 volume:99 year:2020 number:11 pages:6247-6257 |
sourceStr |
In Poultry Science 99(2020), 11, Seite 6247-6257 volume:99 year:2020 number:11 pages:6247-6257 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
chicken breast myopathy metabolomics NMR spectroscopy TD-NMR relaxometry water mobilization Animal culture |
isfreeaccess_bool |
true |
container_title |
Poultry Science |
authorswithroles_txt_mv |
Nara R.B. Cônsolo @@aut@@ Linda M. Samuelsson @@aut@@ Luís C.G.S. Barbosa @@aut@@ Tatiana Monaretto @@aut@@ Tiago B. Moraes @@aut@@ Vicente L.M. Buarque @@aut@@ Angel R. Higuera-Padilla @@aut@@ Luiz A. Colnago @@aut@@ Saulo L. Silva @@aut@@ Marlon M. Reis @@aut@@ André C. Fonseca @@aut@@ Cristiane S. da S. Araújo @@aut@@ Bruna G. de S. Leite @@aut@@ Fabricia A. Roque @@aut@@ Lúcio F. Araújo @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320569535 |
id |
DOAJ04469900X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04469900X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308083616.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psj.2020.06.066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04469900X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF1-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nara R.B. Cônsolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chicken breast myopathy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TD-NMR relaxometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water mobilization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linda M. Samuelsson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luís C.G.S. Barbosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tatiana Monaretto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiago B. Moraes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vicente L.M. Buarque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Angel R. Higuera-Padilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luiz A. Colnago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saulo L. Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marlon M. Reis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">André C. Fonseca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cristiane S. da S. Araújo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruna G. de S. Leite</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabricia A. Roque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lúcio F. Araújo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Poultry Science</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">99(2020), 11, Seite 6247-6257</subfield><subfield code="w">(DE-627)320569535</subfield><subfield code="w">(DE-600)2016331-9</subfield><subfield code="x">15253171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:6247-6257</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.psj.2020.06.066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0032579120304491</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0032-5791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="h">6247-6257</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Nara R.B. Cônsolo |
spellingShingle |
Nara R.B. Cônsolo misc SF1-1100 misc chicken breast myopathy misc metabolomics misc NMR spectroscopy misc TD-NMR relaxometry misc water mobilization misc Animal culture Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study |
authorStr |
Nara R.B. Cônsolo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320569535 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SF1-1100 |
illustrated |
Not Illustrated |
issn |
15253171 |
topic_title |
SF1-1100 Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study chicken breast myopathy metabolomics NMR spectroscopy TD-NMR relaxometry water mobilization |
topic |
misc SF1-1100 misc chicken breast myopathy misc metabolomics misc NMR spectroscopy misc TD-NMR relaxometry misc water mobilization misc Animal culture |
topic_unstemmed |
misc SF1-1100 misc chicken breast myopathy misc metabolomics misc NMR spectroscopy misc TD-NMR relaxometry misc water mobilization misc Animal culture |
topic_browse |
misc SF1-1100 misc chicken breast myopathy misc metabolomics misc NMR spectroscopy misc TD-NMR relaxometry misc water mobilization misc Animal culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Poultry Science |
hierarchy_parent_id |
320569535 |
hierarchy_top_title |
Poultry Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320569535 (DE-600)2016331-9 |
title |
Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study |
ctrlnum |
(DE-627)DOAJ04469900X (DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56 |
title_full |
Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study |
author_sort |
Nara R.B. Cônsolo |
journal |
Poultry Science |
journalStr |
Poultry Science |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
6247 |
author_browse |
Nara R.B. Cônsolo Linda M. Samuelsson Luís C.G.S. Barbosa Tatiana Monaretto Tiago B. Moraes Vicente L.M. Buarque Angel R. Higuera-Padilla Luiz A. Colnago Saulo L. Silva Marlon M. Reis André C. Fonseca Cristiane S. da S. Araújo Bruna G. de S. Leite Fabricia A. Roque Lúcio F. Araújo |
container_volume |
99 |
class |
SF1-1100 |
format_se |
Elektronische Aufsätze |
author-letter |
Nara R.B. Cônsolo |
doi_str_mv |
10.1016/j.psj.2020.06.066 |
author2-role |
verfasserin |
title_sort |
characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study |
callnumber |
SF1-1100 |
title_auth |
Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study |
abstract |
Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. |
abstractGer |
Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. |
abstract_unstemmed |
Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study |
url |
https://doi.org/10.1016/j.psj.2020.06.066 https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56 http://www.sciencedirect.com/science/article/pii/S0032579120304491 https://doaj.org/toc/0032-5791 |
remote_bool |
true |
author2 |
Linda M. Samuelsson Luís C.G.S. Barbosa Tatiana Monaretto Tiago B. Moraes Vicente L.M. Buarque Angel R. Higuera-Padilla Luiz A. Colnago Saulo L. Silva Marlon M. Reis André C. Fonseca Cristiane S. da S. Araújo Bruna G. de S. Leite Fabricia A. Roque Lúcio F. Araújo |
author2Str |
Linda M. Samuelsson Luís C.G.S. Barbosa Tatiana Monaretto Tiago B. Moraes Vicente L.M. Buarque Angel R. Higuera-Padilla Luiz A. Colnago Saulo L. Silva Marlon M. Reis André C. Fonseca Cristiane S. da S. Araújo Bruna G. de S. Leite Fabricia A. Roque Lúcio F. Araújo |
ppnlink |
320569535 |
callnumber-subject |
SF - Animal Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.psj.2020.06.066 |
callnumber-a |
SF1-1100 |
up_date |
2024-07-04T00:08:16.738Z |
_version_ |
1803604927961890816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04469900X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308083616.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psj.2020.06.066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04469900X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe40fb2b5133842d6947e29cd374a3f56</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF1-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nara R.B. Cônsolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metabolite profiles of chicken breast extracts and water mobility in breasts were studied using proton nuclear magnetic resonance (1H-NMR) spectroscopy and time-domain NMR (TD-NMR) relaxometry, respectively, using normal breast (NB), and wooden breast (WB) and white striping (WS) myopathies in broilers. One thousand eight hundred sixty broilers were raised to commercial standards, receiving the same diets that were formulated as per the different growth stages. At 49 D of age, 200 animals were slaughtered following routine commercial procedures, and at 4 h postmortem, the whole breast (pectoralis major muscle) was removed and visually inspected by an experienced meat inspector who selected NB (without myopathies) and samples with the presence of WS and WB myopathies. Fifteen breasts (5 each of NB, WS, and WB) were analyzed through TD-NMR relaxometry, and samples of approximately 20 g were taken from each breast and frozen at −80°C for metabolite profiling through 1H-NMR spectroscopy. Multivariate statistical analysis was used to evaluate the effect on water relaxometry and metabolite profile in accordance with the presence and type of myopathy in the breast. 1H-NMR data showed that the metabolite profiles in WS and WB breasts were different from each other and from NB. This pilot study shows that myopathies appear to be related to hypoxia, connective tissue deposition, lower mitochondrial function, and greater oxidative stress compared with NB. The longitudinal and transverse relaxation time of the breasts determined by TD-NMR relaxometry was shorter for NB than that for WS and WB, indicating greater water mobility in breasts affected by myopathies. 1H-NMR spectroscopy can be used to differentiate the metabolism of WS, WB, and NB, and TD-NMR has the potential to be a fast, simple, and noninvasive method to distinguish NB from WB and WS. As a practical application, the metabolomic profile as per the occurrence of breast myopathies may be used for a better understanding of these issues, which opens a gap to mitigate the incidence and severity of WS and WB. In addition, the present study brings an opportunity for the development of a new and objective tool to classify the incidence of breast myopathies through TD-NMR relaxometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chicken breast myopathy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TD-NMR relaxometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water mobilization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linda M. Samuelsson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luís C.G.S. Barbosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tatiana Monaretto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiago B. Moraes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vicente L.M. Buarque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Angel R. Higuera-Padilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luiz A. Colnago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saulo L. Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marlon M. Reis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">André C. Fonseca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cristiane S. da S. Araújo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruna G. de S. Leite</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabricia A. Roque</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lúcio F. Araújo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Poultry Science</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">99(2020), 11, Seite 6247-6257</subfield><subfield code="w">(DE-627)320569535</subfield><subfield code="w">(DE-600)2016331-9</subfield><subfield code="x">15253171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:6247-6257</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.psj.2020.06.066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e40fb2b5133842d6947e29cd374a3f56</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0032579120304491</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0032-5791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="h">6247-6257</subfield></datafield></record></collection>
|
score |
7.398551 |