Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique
Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analy...
Ausführliche Beschreibung
Autor*in: |
Anh Tung Nguyen [verfasserIn] Nguyen Xuan-Mung [verfasserIn] Sung-Kyung Hong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 9(2019), 18, p 3873 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2019 ; number:18, p 3873 |
Links: |
---|
DOI / URN: |
10.3390/app9183873 |
---|
Katalog-ID: |
DOAJ044797869 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044797869 | ||
003 | DE-627 | ||
005 | 20230503014518.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app9183873 |2 doi | |
035 | |a (DE-627)DOAJ044797869 | ||
035 | |a (DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Anh Tung Nguyen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. | ||
650 | 4 | |a tracking control | |
650 | 4 | |a adaptive control | |
650 | 4 | |a backstepping design | |
650 | 4 | |a unmanned aerial vehicle | |
650 | 4 | |a quadcopter | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Nguyen Xuan-Mung |e verfasserin |4 aut | |
700 | 0 | |a Sung-Kyung Hong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 9(2019), 18, p 3873 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2019 |g number:18, p 3873 |
856 | 4 | 0 | |u https://doi.org/10.3390/app9183873 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/9/18/3873 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2019 |e 18, p 3873 |
author_variant |
a t n atn n x m nxm s k h skh |
---|---|
matchkey_str |
article:20763417:2019----::udotrdpierjcoyrcigotoaeapocv |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.3390/app9183873 doi (DE-627)DOAJ044797869 (DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Anh Tung Nguyen verfasserin aut Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. tracking control adaptive control backstepping design unmanned aerial vehicle quadcopter Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Nguyen Xuan-Mung verfasserin aut Sung-Kyung Hong verfasserin aut In Applied Sciences MDPI AG, 2012 9(2019), 18, p 3873 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:9 year:2019 number:18, p 3873 https://doi.org/10.3390/app9183873 kostenfrei https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95 kostenfrei https://www.mdpi.com/2076-3417/9/18/3873 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 18, p 3873 |
spelling |
10.3390/app9183873 doi (DE-627)DOAJ044797869 (DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Anh Tung Nguyen verfasserin aut Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. tracking control adaptive control backstepping design unmanned aerial vehicle quadcopter Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Nguyen Xuan-Mung verfasserin aut Sung-Kyung Hong verfasserin aut In Applied Sciences MDPI AG, 2012 9(2019), 18, p 3873 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:9 year:2019 number:18, p 3873 https://doi.org/10.3390/app9183873 kostenfrei https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95 kostenfrei https://www.mdpi.com/2076-3417/9/18/3873 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 18, p 3873 |
allfields_unstemmed |
10.3390/app9183873 doi (DE-627)DOAJ044797869 (DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Anh Tung Nguyen verfasserin aut Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. tracking control adaptive control backstepping design unmanned aerial vehicle quadcopter Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Nguyen Xuan-Mung verfasserin aut Sung-Kyung Hong verfasserin aut In Applied Sciences MDPI AG, 2012 9(2019), 18, p 3873 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:9 year:2019 number:18, p 3873 https://doi.org/10.3390/app9183873 kostenfrei https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95 kostenfrei https://www.mdpi.com/2076-3417/9/18/3873 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 18, p 3873 |
allfieldsGer |
10.3390/app9183873 doi (DE-627)DOAJ044797869 (DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Anh Tung Nguyen verfasserin aut Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. tracking control adaptive control backstepping design unmanned aerial vehicle quadcopter Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Nguyen Xuan-Mung verfasserin aut Sung-Kyung Hong verfasserin aut In Applied Sciences MDPI AG, 2012 9(2019), 18, p 3873 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:9 year:2019 number:18, p 3873 https://doi.org/10.3390/app9183873 kostenfrei https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95 kostenfrei https://www.mdpi.com/2076-3417/9/18/3873 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 18, p 3873 |
allfieldsSound |
10.3390/app9183873 doi (DE-627)DOAJ044797869 (DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Anh Tung Nguyen verfasserin aut Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. tracking control adaptive control backstepping design unmanned aerial vehicle quadcopter Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Nguyen Xuan-Mung verfasserin aut Sung-Kyung Hong verfasserin aut In Applied Sciences MDPI AG, 2012 9(2019), 18, p 3873 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:9 year:2019 number:18, p 3873 https://doi.org/10.3390/app9183873 kostenfrei https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95 kostenfrei https://www.mdpi.com/2076-3417/9/18/3873 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2019 18, p 3873 |
language |
English |
source |
In Applied Sciences 9(2019), 18, p 3873 volume:9 year:2019 number:18, p 3873 |
sourceStr |
In Applied Sciences 9(2019), 18, p 3873 volume:9 year:2019 number:18, p 3873 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tracking control adaptive control backstepping design unmanned aerial vehicle quadcopter Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Anh Tung Nguyen @@aut@@ Nguyen Xuan-Mung @@aut@@ Sung-Kyung Hong @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ044797869 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044797869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503014518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app9183873</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044797869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anh Tung Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tracking control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">backstepping design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unmanned aerial vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quadcopter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nguyen Xuan-Mung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sung-Kyung Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">9(2019), 18, p 3873</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:18, p 3873</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app9183873</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/9/18/3873</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2019</subfield><subfield code="e">18, p 3873</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Anh Tung Nguyen |
spellingShingle |
Anh Tung Nguyen misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc tracking control misc adaptive control misc backstepping design misc unmanned aerial vehicle misc quadcopter misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique |
authorStr |
Anh Tung Nguyen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique tracking control adaptive control backstepping design unmanned aerial vehicle quadcopter |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc tracking control misc adaptive control misc backstepping design misc unmanned aerial vehicle misc quadcopter misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc tracking control misc adaptive control misc backstepping design misc unmanned aerial vehicle misc quadcopter misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc tracking control misc adaptive control misc backstepping design misc unmanned aerial vehicle misc quadcopter misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique |
ctrlnum |
(DE-627)DOAJ044797869 (DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95 |
title_full |
Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique |
author_sort |
Anh Tung Nguyen |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Anh Tung Nguyen Nguyen Xuan-Mung Sung-Kyung Hong |
container_volume |
9 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Anh Tung Nguyen |
doi_str_mv |
10.3390/app9183873 |
author2-role |
verfasserin |
title_sort |
quadcopter adaptive trajectory tracking control: a new approach via backstepping technique |
callnumber |
TA1-2040 |
title_auth |
Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique |
abstract |
Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. |
abstractGer |
Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. |
abstract_unstemmed |
Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
18, p 3873 |
title_short |
Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique |
url |
https://doi.org/10.3390/app9183873 https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95 https://www.mdpi.com/2076-3417/9/18/3873 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Nguyen Xuan-Mung Sung-Kyung Hong |
author2Str |
Nguyen Xuan-Mung Sung-Kyung Hong |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app9183873 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T00:31:24.279Z |
_version_ |
1803606382905131008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044797869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503014518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app9183873</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044797869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ16a0ca03c48c4978aff785d9d0562c95</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anh Tung Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quadcopter Adaptive Trajectory Tracking Control: A New Approach via Backstepping Technique</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world applications and the improvement of their control performance has become an increasingly attractive topic of a great number of studies. In this paper, we present a new approach for the design and stability analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear dynamics model which is obtained by using the Euler−Lagrange approach, the tracking controller is devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with the system parameterized uncertainties and to guarantee that the control input is finite. In addition, the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our method to that of existing approaches. The simulation results demonstrate the effectiveness of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tracking control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">backstepping design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unmanned aerial vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quadcopter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nguyen Xuan-Mung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sung-Kyung Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">9(2019), 18, p 3873</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:18, p 3873</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app9183873</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/16a0ca03c48c4978aff785d9d0562c95</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/9/18/3873</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2019</subfield><subfield code="e">18, p 3873</subfield></datafield></record></collection>
|
score |
7.401458 |