Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles
The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub&l...
Ausführliche Beschreibung
Autor*in: |
Shuai Hu [verfasserIn] Maohui Yuan [verfasserIn] Linxuan Wang [verfasserIn] Changqing Song [verfasserIn] Zining Yang [verfasserIn] Hongyan Wang [verfasserIn] Kai Han [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
synthesis and fabrication methods |
---|
Übergeordnetes Werk: |
In: IEEE Photonics Journal - IEEE, 2015, 14(2022), 2, Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:2 ; pages:10 |
Links: |
---|
DOI / URN: |
10.1109/JPHOT.2022.3150524 |
---|
Katalog-ID: |
DOAJ044833415 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044833415 | ||
003 | DE-627 | ||
005 | 20230308084524.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/JPHOT.2022.3150524 |2 doi | |
035 | |a (DE-627)DOAJ044833415 | ||
035 | |a (DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1501-1820 | |
050 | 0 | |a QC350-467 | |
100 | 0 | |a Shuai Hu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. | ||
650 | 4 | |a Photonic materials | |
650 | 4 | |a synthesis and fabrication methods | |
650 | 4 | |a luminiescence and fluorescence | |
650 | 4 | |a optical properties of photonic materials | |
653 | 0 | |a Applied optics. Photonics | |
653 | 0 | |a Optics. Light | |
700 | 0 | |a Maohui Yuan |e verfasserin |4 aut | |
700 | 0 | |a Linxuan Wang |e verfasserin |4 aut | |
700 | 0 | |a Changqing Song |e verfasserin |4 aut | |
700 | 0 | |a Zining Yang |e verfasserin |4 aut | |
700 | 0 | |a Hongyan Wang |e verfasserin |4 aut | |
700 | 0 | |a Kai Han |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Photonics Journal |d IEEE, 2015 |g 14(2022), 2, Seite 10 |w (DE-627)600310272 |w (DE-600)2495610-7 |x 19430655 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:2 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.1109/JPHOT.2022.3150524 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9712217/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1943-0655 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 2 |h 10 |
author_variant |
s h sh m y my l w lw c s cs z y zy h w hw k h kh |
---|---|
matchkey_str |
article:19430655:2022----::eoofaeyteiadaiuaigpovrinuiecneflrsalsbsbsbs |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1109/JPHOT.2022.3150524 doi (DE-627)DOAJ044833415 (DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Shuai Hu verfasserin aut Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. Photonic materials synthesis and fabrication methods luminiescence and fluorescence optical properties of photonic materials Applied optics. Photonics Optics. Light Maohui Yuan verfasserin aut Linxuan Wang verfasserin aut Changqing Song verfasserin aut Zining Yang verfasserin aut Hongyan Wang verfasserin aut Kai Han verfasserin aut In IEEE Photonics Journal IEEE, 2015 14(2022), 2, Seite 10 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:14 year:2022 number:2 pages:10 https://doi.org/10.1109/JPHOT.2022.3150524 kostenfrei https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1 kostenfrei https://ieeexplore.ieee.org/document/9712217/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 10 |
spelling |
10.1109/JPHOT.2022.3150524 doi (DE-627)DOAJ044833415 (DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Shuai Hu verfasserin aut Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. Photonic materials synthesis and fabrication methods luminiescence and fluorescence optical properties of photonic materials Applied optics. Photonics Optics. Light Maohui Yuan verfasserin aut Linxuan Wang verfasserin aut Changqing Song verfasserin aut Zining Yang verfasserin aut Hongyan Wang verfasserin aut Kai Han verfasserin aut In IEEE Photonics Journal IEEE, 2015 14(2022), 2, Seite 10 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:14 year:2022 number:2 pages:10 https://doi.org/10.1109/JPHOT.2022.3150524 kostenfrei https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1 kostenfrei https://ieeexplore.ieee.org/document/9712217/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 10 |
allfields_unstemmed |
10.1109/JPHOT.2022.3150524 doi (DE-627)DOAJ044833415 (DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Shuai Hu verfasserin aut Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. Photonic materials synthesis and fabrication methods luminiescence and fluorescence optical properties of photonic materials Applied optics. Photonics Optics. Light Maohui Yuan verfasserin aut Linxuan Wang verfasserin aut Changqing Song verfasserin aut Zining Yang verfasserin aut Hongyan Wang verfasserin aut Kai Han verfasserin aut In IEEE Photonics Journal IEEE, 2015 14(2022), 2, Seite 10 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:14 year:2022 number:2 pages:10 https://doi.org/10.1109/JPHOT.2022.3150524 kostenfrei https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1 kostenfrei https://ieeexplore.ieee.org/document/9712217/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 10 |
allfieldsGer |
10.1109/JPHOT.2022.3150524 doi (DE-627)DOAJ044833415 (DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Shuai Hu verfasserin aut Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. Photonic materials synthesis and fabrication methods luminiescence and fluorescence optical properties of photonic materials Applied optics. Photonics Optics. Light Maohui Yuan verfasserin aut Linxuan Wang verfasserin aut Changqing Song verfasserin aut Zining Yang verfasserin aut Hongyan Wang verfasserin aut Kai Han verfasserin aut In IEEE Photonics Journal IEEE, 2015 14(2022), 2, Seite 10 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:14 year:2022 number:2 pages:10 https://doi.org/10.1109/JPHOT.2022.3150524 kostenfrei https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1 kostenfrei https://ieeexplore.ieee.org/document/9712217/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 10 |
allfieldsSound |
10.1109/JPHOT.2022.3150524 doi (DE-627)DOAJ044833415 (DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Shuai Hu verfasserin aut Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. Photonic materials synthesis and fabrication methods luminiescence and fluorescence optical properties of photonic materials Applied optics. Photonics Optics. Light Maohui Yuan verfasserin aut Linxuan Wang verfasserin aut Changqing Song verfasserin aut Zining Yang verfasserin aut Hongyan Wang verfasserin aut Kai Han verfasserin aut In IEEE Photonics Journal IEEE, 2015 14(2022), 2, Seite 10 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:14 year:2022 number:2 pages:10 https://doi.org/10.1109/JPHOT.2022.3150524 kostenfrei https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1 kostenfrei https://ieeexplore.ieee.org/document/9712217/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 10 |
language |
English |
source |
In IEEE Photonics Journal 14(2022), 2, Seite 10 volume:14 year:2022 number:2 pages:10 |
sourceStr |
In IEEE Photonics Journal 14(2022), 2, Seite 10 volume:14 year:2022 number:2 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Photonic materials synthesis and fabrication methods luminiescence and fluorescence optical properties of photonic materials Applied optics. Photonics Optics. Light |
isfreeaccess_bool |
true |
container_title |
IEEE Photonics Journal |
authorswithroles_txt_mv |
Shuai Hu @@aut@@ Maohui Yuan @@aut@@ Linxuan Wang @@aut@@ Changqing Song @@aut@@ Zining Yang @@aut@@ Hongyan Wang @@aut@@ Kai Han @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
600310272 |
id |
DOAJ044833415 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044833415</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308084524.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2022.3150524</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044833415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shuai Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis and fabrication methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">luminiescence and fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical properties of photonic materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maohui Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linxuan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changqing Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zining Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongyan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">14(2022), 2, Seite 10</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2022.3150524</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9712217/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Shuai Hu |
spellingShingle |
Shuai Hu misc TA1501-1820 misc QC350-467 misc Photonic materials misc synthesis and fabrication methods misc luminiescence and fluorescence misc optical properties of photonic materials misc Applied optics. Photonics misc Optics. Light Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles |
authorStr |
Shuai Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)600310272 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1501-1820 |
illustrated |
Not Illustrated |
issn |
19430655 |
topic_title |
TA1501-1820 QC350-467 Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles Photonic materials synthesis and fabrication methods luminiescence and fluorescence optical properties of photonic materials |
topic |
misc TA1501-1820 misc QC350-467 misc Photonic materials misc synthesis and fabrication methods misc luminiescence and fluorescence misc optical properties of photonic materials misc Applied optics. Photonics misc Optics. Light |
topic_unstemmed |
misc TA1501-1820 misc QC350-467 misc Photonic materials misc synthesis and fabrication methods misc luminiescence and fluorescence misc optical properties of photonic materials misc Applied optics. Photonics misc Optics. Light |
topic_browse |
misc TA1501-1820 misc QC350-467 misc Photonic materials misc synthesis and fabrication methods misc luminiescence and fluorescence misc optical properties of photonic materials misc Applied optics. Photonics misc Optics. Light |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Photonics Journal |
hierarchy_parent_id |
600310272 |
hierarchy_top_title |
IEEE Photonics Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)600310272 (DE-600)2495610-7 |
title |
Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles |
ctrlnum |
(DE-627)DOAJ044833415 (DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1 |
title_full |
Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles |
author_sort |
Shuai Hu |
journal |
IEEE Photonics Journal |
journalStr |
IEEE Photonics Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Shuai Hu Maohui Yuan Linxuan Wang Changqing Song Zining Yang Hongyan Wang Kai Han |
container_volume |
14 |
class |
TA1501-1820 QC350-467 |
format_se |
Elektronische Aufsätze |
author-letter |
Shuai Hu |
doi_str_mv |
10.1109/JPHOT.2022.3150524 |
author2-role |
verfasserin |
title_sort |
aerosol flame synthesis and manipulating upconversion luminescence of ultrasmall y<sub<2</sub<o<sub<3</sub<:yb<sup<3+</sup</ho<sup<3+</sup< nanoparticles |
callnumber |
TA1501-1820 |
title_auth |
Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles |
abstract |
The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. |
abstractGer |
The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. |
abstract_unstemmed |
The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles |
url |
https://doi.org/10.1109/JPHOT.2022.3150524 https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1 https://ieeexplore.ieee.org/document/9712217/ https://doaj.org/toc/1943-0655 |
remote_bool |
true |
author2 |
Maohui Yuan Linxuan Wang Changqing Song Zining Yang Hongyan Wang Kai Han |
author2Str |
Maohui Yuan Linxuan Wang Changqing Song Zining Yang Hongyan Wang Kai Han |
ppnlink |
600310272 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/JPHOT.2022.3150524 |
callnumber-a |
TA1501-1820 |
up_date |
2024-07-04T00:39:39.172Z |
_version_ |
1803606901835956224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044833415</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308084524.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2022.3150524</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044833415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ93ee50ad5181469bbc11aba0148860d1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shuai Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerosol Flame Synthesis and Manipulating Upconversion Luminescence of Ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< Nanoparticles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The synthesis of upconversion nanoparticles (UCNPs) by flame aerosol is of great significance to realize industrial large-scale production of UCNPs and develop nanotechnology further. Here, for the first time, we successfully fabricated the ultrasmall Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs by a self-build swirl flame spray pyrolysis (SFSP) method with a high production rate of ∼40 g<inline-formula<<tex-math notation="LaTeX"<$ \cdot $</tex-math<</inline-formula< h<sup<−1</sup<. These flame-made UCNPs are all pure cubic phases with an average ultrasmall size of ∼14 nm. Excited by 980 nm laser, the synthesized UCNPs show bright green (<sup<2</sup<F<sub<4</sub<, <sup<5</sup<S<sub<2</sub< → <sup<5</sup<I<sub<8</sub<) and relatively weak red (<sup<5</sup<F<sub<5</sub< → <sup<5</sup<I<sub<8</sub<) upconversion luminescence (UCL). Based on the UCL spectra of Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs, the optimal doping concentrations of 6 mol% Yb<sup<3+</sup< and 0.1 mol% Ho<sup<3+</sup< were determined to reach the most intense UCL. The dependence of UCL intensity and pump power was further analyzed, and it indicated that the green and red UCL are two-photon processes. In addition, the UCL properties with different synthesized conditions were also demonstrated. The UCL mechanism of these flame-made Y<sub<2</sub<O<sub<3</sub<:Yb<sup<3+</sup</Ho<sup<3+</sup< UCNPs were illustrated in detail. Our results prove that industrial large-scale production of continuous one-step synthesis of UCNPs by flame aerosol technology is completely feasible and deserves further study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis and fabrication methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">luminiescence and fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical properties of photonic materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maohui Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linxuan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changqing Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zining Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongyan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">14(2022), 2, Seite 10</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2022.3150524</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/93ee50ad5181469bbc11aba0148860d1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9712217/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.401101 |