Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic propertie...
Ausführliche Beschreibung
Autor*in: |
Sabiha I. Mahmood [verfasserIn] Asaad Adel Abdul-Hady [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ibn Al-Haitham Journal for Pure and Applied Sciences - University of Baghdad, 2019, 31(2018), 2 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2018 ; number:2 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.30526/31.2.1953 |
---|
Katalog-ID: |
DOAJ044858124 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ044858124 | ||
003 | DE-627 | ||
005 | 20230502133957.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.30526/31.2.1953 |2 doi | |
035 | |a (DE-627)DOAJ044858124 | ||
035 | |a (DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Sabiha I. Mahmood |e verfasserin |4 aut | |
245 | 1 | 0 | |a Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. | ||
650 | 4 | |a Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Asaad Adel Abdul-Hady |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ibn Al-Haitham Journal for Pure and Applied Sciences |d University of Baghdad, 2019 |g 31(2018), 2 |w (DE-627)756825806 |w (DE-600)2727526-7 |x 25213407 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2018 |g number:2 |
856 | 4 | 0 | |u https://doi.org/10.30526/31.2.1953 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339 |z kostenfrei |
856 | 4 | 0 | |u https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1609-4042 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2521-3407 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 31 |j 2018 |e 2 |
author_variant |
s i m sim a a a h aaah |
---|---|
matchkey_str |
article:25213407:2018----::ot2mgsprtoaimadekot2mgsprtoaimi |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.30526/31.2.1953 doi (DE-627)DOAJ044858124 (DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339 DE-627 ger DE-627 rakwb eng Sabiha I. Mahmood verfasserin aut Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . Science Q Asaad Adel Abdul-Hady verfasserin aut In Ibn Al-Haitham Journal for Pure and Applied Sciences University of Baghdad, 2019 31(2018), 2 (DE-627)756825806 (DE-600)2727526-7 25213407 nnns volume:31 year:2018 number:2 https://doi.org/10.30526/31.2.1953 kostenfrei https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339 kostenfrei https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953 kostenfrei https://doaj.org/toc/1609-4042 Journal toc kostenfrei https://doaj.org/toc/2521-3407 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2018 2 |
spelling |
10.30526/31.2.1953 doi (DE-627)DOAJ044858124 (DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339 DE-627 ger DE-627 rakwb eng Sabiha I. Mahmood verfasserin aut Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . Science Q Asaad Adel Abdul-Hady verfasserin aut In Ibn Al-Haitham Journal for Pure and Applied Sciences University of Baghdad, 2019 31(2018), 2 (DE-627)756825806 (DE-600)2727526-7 25213407 nnns volume:31 year:2018 number:2 https://doi.org/10.30526/31.2.1953 kostenfrei https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339 kostenfrei https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953 kostenfrei https://doaj.org/toc/1609-4042 Journal toc kostenfrei https://doaj.org/toc/2521-3407 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2018 2 |
allfields_unstemmed |
10.30526/31.2.1953 doi (DE-627)DOAJ044858124 (DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339 DE-627 ger DE-627 rakwb eng Sabiha I. Mahmood verfasserin aut Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . Science Q Asaad Adel Abdul-Hady verfasserin aut In Ibn Al-Haitham Journal for Pure and Applied Sciences University of Baghdad, 2019 31(2018), 2 (DE-627)756825806 (DE-600)2727526-7 25213407 nnns volume:31 year:2018 number:2 https://doi.org/10.30526/31.2.1953 kostenfrei https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339 kostenfrei https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953 kostenfrei https://doaj.org/toc/1609-4042 Journal toc kostenfrei https://doaj.org/toc/2521-3407 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2018 2 |
allfieldsGer |
10.30526/31.2.1953 doi (DE-627)DOAJ044858124 (DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339 DE-627 ger DE-627 rakwb eng Sabiha I. Mahmood verfasserin aut Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . Science Q Asaad Adel Abdul-Hady verfasserin aut In Ibn Al-Haitham Journal for Pure and Applied Sciences University of Baghdad, 2019 31(2018), 2 (DE-627)756825806 (DE-600)2727526-7 25213407 nnns volume:31 year:2018 number:2 https://doi.org/10.30526/31.2.1953 kostenfrei https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339 kostenfrei https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953 kostenfrei https://doaj.org/toc/1609-4042 Journal toc kostenfrei https://doaj.org/toc/2521-3407 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2018 2 |
allfieldsSound |
10.30526/31.2.1953 doi (DE-627)DOAJ044858124 (DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339 DE-627 ger DE-627 rakwb eng Sabiha I. Mahmood verfasserin aut Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . Science Q Asaad Adel Abdul-Hady verfasserin aut In Ibn Al-Haitham Journal for Pure and Applied Sciences University of Baghdad, 2019 31(2018), 2 (DE-627)756825806 (DE-600)2727526-7 25213407 nnns volume:31 year:2018 number:2 https://doi.org/10.30526/31.2.1953 kostenfrei https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339 kostenfrei https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953 kostenfrei https://doaj.org/toc/1609-4042 Journal toc kostenfrei https://doaj.org/toc/2521-3407 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2018 2 |
language |
English |
source |
In Ibn Al-Haitham Journal for Pure and Applied Sciences 31(2018), 2 volume:31 year:2018 number:2 |
sourceStr |
In Ibn Al-Haitham Journal for Pure and Applied Sciences 31(2018), 2 volume:31 year:2018 number:2 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . Science Q |
isfreeaccess_bool |
true |
container_title |
Ibn Al-Haitham Journal for Pure and Applied Sciences |
authorswithroles_txt_mv |
Sabiha I. Mahmood @@aut@@ Asaad Adel Abdul-Hady @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
756825806 |
id |
DOAJ044858124 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044858124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502133957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.30526/31.2.1953</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044858124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sabiha I. Mahmood</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for .</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Asaad Adel Abdul-Hady</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ibn Al-Haitham Journal for Pure and Applied Sciences</subfield><subfield code="d">University of Baghdad, 2019</subfield><subfield code="g">31(2018), 2</subfield><subfield code="w">(DE-627)756825806</subfield><subfield code="w">(DE-600)2727526-7</subfield><subfield code="x">25213407</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.30526/31.2.1953</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1609-4042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2521-3407</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
author |
Sabiha I. Mahmood |
spellingShingle |
Sabiha I. Mahmood misc Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . misc Science misc Q Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces |
authorStr |
Sabiha I. Mahmood |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)756825806 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25213407 |
topic_title |
Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . |
topic |
misc Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . misc Science misc Q |
topic_unstemmed |
misc Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . misc Science misc Q |
topic_browse |
misc Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for . misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ibn Al-Haitham Journal for Pure and Applied Sciences |
hierarchy_parent_id |
756825806 |
hierarchy_top_title |
Ibn Al-Haitham Journal for Pure and Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)756825806 (DE-600)2727526-7 |
title |
Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces |
ctrlnum |
(DE-627)DOAJ044858124 (DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339 |
title_full |
Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces |
author_sort |
Sabiha I. Mahmood |
journal |
Ibn Al-Haitham Journal for Pure and Applied Sciences |
journalStr |
Ibn Al-Haitham Journal for Pure and Applied Sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Sabiha I. Mahmood Asaad Adel Abdul-Hady |
container_volume |
31 |
format_se |
Elektronische Aufsätze |
author-letter |
Sabiha I. Mahmood |
doi_str_mv |
10.30526/31.2.1953 |
author2-role |
verfasserin |
title_sort |
soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms in soft bitopological spaces |
title_auth |
Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces |
abstract |
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. |
abstractGer |
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. |
abstract_unstemmed |
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces |
url |
https://doi.org/10.30526/31.2.1953 https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339 https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953 https://doaj.org/toc/1609-4042 https://doaj.org/toc/2521-3407 |
remote_bool |
true |
author2 |
Asaad Adel Abdul-Hady |
author2Str |
Asaad Adel Abdul-Hady |
ppnlink |
756825806 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.30526/31.2.1953 |
up_date |
2024-07-04T00:45:07.686Z |
_version_ |
1803607246306803712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ044858124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502133957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.30526/31.2.1953</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ044858124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d29265d683f40bf8b8d3175c453d339</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sabiha I. Mahmood</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft (1,2)*-ω-open sets, soft (1,2)*-ω- -spaces, soft (1,2)*-α-ω- -spaces, soft (1,2)*-pre-ω- -spaces, soft (1,2)*-b-ω- -spaces, and soft (1,2)*-β-ω- -spaces, for .</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Asaad Adel Abdul-Hady</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ibn Al-Haitham Journal for Pure and Applied Sciences</subfield><subfield code="d">University of Baghdad, 2019</subfield><subfield code="g">31(2018), 2</subfield><subfield code="w">(DE-627)756825806</subfield><subfield code="w">(DE-600)2727526-7</subfield><subfield code="x">25213407</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.30526/31.2.1953</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d29265d683f40bf8b8d3175c453d339</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jih.uobaghdad.edu.iq/index.php/j/article/view/1953</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1609-4042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2521-3407</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
score |
7.4000845 |