Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway
Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expre...
Ausführliche Beschreibung
Autor*in: |
Linting Wei [verfasserIn] Jiarong Mao [verfasserIn] Jiamei Lu [verfasserIn] Jie Gao [verfasserIn] Dan Zhu [verfasserIn] Lifang Tian [verfasserIn] Zhao Chen [verfasserIn] Lining Jia [verfasserIn] Li Wang [verfasserIn] Rongguo Fu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cellular Physiology and Biochemistry - Cell Physiol Biochem Press GmbH & Co KG, 2002, 44(2017), 6, Seite 2228-2242 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2017 ; number:6 ; pages:2228-2242 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1159/000486056 |
---|
Katalog-ID: |
DOAJ04499981X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04499981X | ||
003 | DE-627 | ||
005 | 20230501183415.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1159/000486056 |2 doi | |
035 | |a (DE-627)DOAJ04499981X | ||
035 | |a (DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QP1-981 | |
050 | 0 | |a QD415-436 | |
100 | 0 | |a Linting Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. | ||
650 | 4 | |a RSG | |
650 | 4 | |a TRPC | |
650 | 4 | |a HBZY-1 | |
650 | 4 | |a Proliferation | |
650 | 4 | |a PPAR-γ | |
650 | 4 | |a RGS4 | |
653 | 0 | |a Physiology | |
653 | 0 | |a Biochemistry | |
700 | 0 | |a Jiarong Mao |e verfasserin |4 aut | |
700 | 0 | |a Jiamei Lu |e verfasserin |4 aut | |
700 | 0 | |a Jie Gao |e verfasserin |4 aut | |
700 | 0 | |a Dan Zhu |e verfasserin |4 aut | |
700 | 0 | |a Lifang Tian |e verfasserin |4 aut | |
700 | 0 | |a Zhao Chen |e verfasserin |4 aut | |
700 | 0 | |a Lining Jia |e verfasserin |4 aut | |
700 | 0 | |a Li Wang |e verfasserin |4 aut | |
700 | 0 | |a Rongguo Fu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cellular Physiology and Biochemistry |d Cell Physiol Biochem Press GmbH & Co KG, 2002 |g 44(2017), 6, Seite 2228-2242 |w (DE-627)300189702 |w (DE-600)1482056-0 |x 14219778 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2017 |g number:6 |g pages:2228-2242 |
856 | 4 | 0 | |u https://doi.org/10.1159/000486056 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3 |z kostenfrei |
856 | 4 | 0 | |u https://www.karger.com/Article/FullText/486056 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1015-8987 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1421-9778 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44 |j 2017 |e 6 |h 2228-2242 |
author_variant |
l w lw j m jm j l jl j g jg d z dz l t lt z c zc l j lj l w lw r f rf |
---|---|
matchkey_str |
article:14219778:2017----::oiltznihbtagoesninuepoieainflmrlreagaclsit |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QP |
publishDate |
2017 |
allfields |
10.1159/000486056 doi (DE-627)DOAJ04499981X (DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3 DE-627 ger DE-627 rakwb eng QP1-981 QD415-436 Linting Wei verfasserin aut Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. RSG TRPC HBZY-1 Proliferation PPAR-γ RGS4 Physiology Biochemistry Jiarong Mao verfasserin aut Jiamei Lu verfasserin aut Jie Gao verfasserin aut Dan Zhu verfasserin aut Lifang Tian verfasserin aut Zhao Chen verfasserin aut Lining Jia verfasserin aut Li Wang verfasserin aut Rongguo Fu verfasserin aut In Cellular Physiology and Biochemistry Cell Physiol Biochem Press GmbH & Co KG, 2002 44(2017), 6, Seite 2228-2242 (DE-627)300189702 (DE-600)1482056-0 14219778 nnns volume:44 year:2017 number:6 pages:2228-2242 https://doi.org/10.1159/000486056 kostenfrei https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3 kostenfrei https://www.karger.com/Article/FullText/486056 kostenfrei https://doaj.org/toc/1015-8987 Journal toc kostenfrei https://doaj.org/toc/1421-9778 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2017 6 2228-2242 |
spelling |
10.1159/000486056 doi (DE-627)DOAJ04499981X (DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3 DE-627 ger DE-627 rakwb eng QP1-981 QD415-436 Linting Wei verfasserin aut Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. RSG TRPC HBZY-1 Proliferation PPAR-γ RGS4 Physiology Biochemistry Jiarong Mao verfasserin aut Jiamei Lu verfasserin aut Jie Gao verfasserin aut Dan Zhu verfasserin aut Lifang Tian verfasserin aut Zhao Chen verfasserin aut Lining Jia verfasserin aut Li Wang verfasserin aut Rongguo Fu verfasserin aut In Cellular Physiology and Biochemistry Cell Physiol Biochem Press GmbH & Co KG, 2002 44(2017), 6, Seite 2228-2242 (DE-627)300189702 (DE-600)1482056-0 14219778 nnns volume:44 year:2017 number:6 pages:2228-2242 https://doi.org/10.1159/000486056 kostenfrei https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3 kostenfrei https://www.karger.com/Article/FullText/486056 kostenfrei https://doaj.org/toc/1015-8987 Journal toc kostenfrei https://doaj.org/toc/1421-9778 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2017 6 2228-2242 |
allfields_unstemmed |
10.1159/000486056 doi (DE-627)DOAJ04499981X (DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3 DE-627 ger DE-627 rakwb eng QP1-981 QD415-436 Linting Wei verfasserin aut Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. RSG TRPC HBZY-1 Proliferation PPAR-γ RGS4 Physiology Biochemistry Jiarong Mao verfasserin aut Jiamei Lu verfasserin aut Jie Gao verfasserin aut Dan Zhu verfasserin aut Lifang Tian verfasserin aut Zhao Chen verfasserin aut Lining Jia verfasserin aut Li Wang verfasserin aut Rongguo Fu verfasserin aut In Cellular Physiology and Biochemistry Cell Physiol Biochem Press GmbH & Co KG, 2002 44(2017), 6, Seite 2228-2242 (DE-627)300189702 (DE-600)1482056-0 14219778 nnns volume:44 year:2017 number:6 pages:2228-2242 https://doi.org/10.1159/000486056 kostenfrei https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3 kostenfrei https://www.karger.com/Article/FullText/486056 kostenfrei https://doaj.org/toc/1015-8987 Journal toc kostenfrei https://doaj.org/toc/1421-9778 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2017 6 2228-2242 |
allfieldsGer |
10.1159/000486056 doi (DE-627)DOAJ04499981X (DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3 DE-627 ger DE-627 rakwb eng QP1-981 QD415-436 Linting Wei verfasserin aut Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. RSG TRPC HBZY-1 Proliferation PPAR-γ RGS4 Physiology Biochemistry Jiarong Mao verfasserin aut Jiamei Lu verfasserin aut Jie Gao verfasserin aut Dan Zhu verfasserin aut Lifang Tian verfasserin aut Zhao Chen verfasserin aut Lining Jia verfasserin aut Li Wang verfasserin aut Rongguo Fu verfasserin aut In Cellular Physiology and Biochemistry Cell Physiol Biochem Press GmbH & Co KG, 2002 44(2017), 6, Seite 2228-2242 (DE-627)300189702 (DE-600)1482056-0 14219778 nnns volume:44 year:2017 number:6 pages:2228-2242 https://doi.org/10.1159/000486056 kostenfrei https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3 kostenfrei https://www.karger.com/Article/FullText/486056 kostenfrei https://doaj.org/toc/1015-8987 Journal toc kostenfrei https://doaj.org/toc/1421-9778 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2017 6 2228-2242 |
allfieldsSound |
10.1159/000486056 doi (DE-627)DOAJ04499981X (DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3 DE-627 ger DE-627 rakwb eng QP1-981 QD415-436 Linting Wei verfasserin aut Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. RSG TRPC HBZY-1 Proliferation PPAR-γ RGS4 Physiology Biochemistry Jiarong Mao verfasserin aut Jiamei Lu verfasserin aut Jie Gao verfasserin aut Dan Zhu verfasserin aut Lifang Tian verfasserin aut Zhao Chen verfasserin aut Lining Jia verfasserin aut Li Wang verfasserin aut Rongguo Fu verfasserin aut In Cellular Physiology and Biochemistry Cell Physiol Biochem Press GmbH & Co KG, 2002 44(2017), 6, Seite 2228-2242 (DE-627)300189702 (DE-600)1482056-0 14219778 nnns volume:44 year:2017 number:6 pages:2228-2242 https://doi.org/10.1159/000486056 kostenfrei https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3 kostenfrei https://www.karger.com/Article/FullText/486056 kostenfrei https://doaj.org/toc/1015-8987 Journal toc kostenfrei https://doaj.org/toc/1421-9778 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2017 6 2228-2242 |
language |
English |
source |
In Cellular Physiology and Biochemistry 44(2017), 6, Seite 2228-2242 volume:44 year:2017 number:6 pages:2228-2242 |
sourceStr |
In Cellular Physiology and Biochemistry 44(2017), 6, Seite 2228-2242 volume:44 year:2017 number:6 pages:2228-2242 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
RSG TRPC HBZY-1 Proliferation PPAR-γ RGS4 Physiology Biochemistry |
isfreeaccess_bool |
true |
container_title |
Cellular Physiology and Biochemistry |
authorswithroles_txt_mv |
Linting Wei @@aut@@ Jiarong Mao @@aut@@ Jiamei Lu @@aut@@ Jie Gao @@aut@@ Dan Zhu @@aut@@ Lifang Tian @@aut@@ Zhao Chen @@aut@@ Lining Jia @@aut@@ Li Wang @@aut@@ Rongguo Fu @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
300189702 |
id |
DOAJ04499981X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04499981X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501183415.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1159/000486056</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04499981X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP1-981</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Linting Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RSG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TRPC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HBZY-1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proliferation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PPAR-γ</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RGS4</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physiology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiarong Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiamei Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dan Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lifang Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lining Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongguo Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cellular Physiology and Biochemistry</subfield><subfield code="d">Cell Physiol Biochem Press GmbH & Co KG, 2002</subfield><subfield code="g">44(2017), 6, Seite 2228-2242</subfield><subfield code="w">(DE-627)300189702</subfield><subfield code="w">(DE-600)1482056-0</subfield><subfield code="x">14219778</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2228-2242</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1159/000486056</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.karger.com/Article/FullText/486056</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1015-8987</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1421-9778</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">2228-2242</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Linting Wei |
spellingShingle |
Linting Wei misc QP1-981 misc QD415-436 misc RSG misc TRPC misc HBZY-1 misc Proliferation misc PPAR-γ misc RGS4 misc Physiology misc Biochemistry Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway |
authorStr |
Linting Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300189702 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QP1-981 |
illustrated |
Not Illustrated |
issn |
14219778 |
topic_title |
QP1-981 QD415-436 Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway RSG TRPC HBZY-1 Proliferation PPAR-γ RGS4 |
topic |
misc QP1-981 misc QD415-436 misc RSG misc TRPC misc HBZY-1 misc Proliferation misc PPAR-γ misc RGS4 misc Physiology misc Biochemistry |
topic_unstemmed |
misc QP1-981 misc QD415-436 misc RSG misc TRPC misc HBZY-1 misc Proliferation misc PPAR-γ misc RGS4 misc Physiology misc Biochemistry |
topic_browse |
misc QP1-981 misc QD415-436 misc RSG misc TRPC misc HBZY-1 misc Proliferation misc PPAR-γ misc RGS4 misc Physiology misc Biochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cellular Physiology and Biochemistry |
hierarchy_parent_id |
300189702 |
hierarchy_top_title |
Cellular Physiology and Biochemistry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)300189702 (DE-600)1482056-0 |
title |
Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway |
ctrlnum |
(DE-627)DOAJ04499981X (DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3 |
title_full |
Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway |
author_sort |
Linting Wei |
journal |
Cellular Physiology and Biochemistry |
journalStr |
Cellular Physiology and Biochemistry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2228 |
author_browse |
Linting Wei Jiarong Mao Jiamei Lu Jie Gao Dan Zhu Lifang Tian Zhao Chen Lining Jia Li Wang Rongguo Fu |
container_volume |
44 |
class |
QP1-981 QD415-436 |
format_se |
Elektronische Aufsätze |
author-letter |
Linting Wei |
doi_str_mv |
10.1159/000486056 |
author2-role |
verfasserin |
title_sort |
rosiglitazone inhibits angiotensin ii-induced proliferation of glomerular mesangial cells via the gαq/plcβ4/trpc signaling pathway |
callnumber |
QP1-981 |
title_auth |
Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway |
abstract |
Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. |
abstractGer |
Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. |
abstract_unstemmed |
Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway |
url |
https://doi.org/10.1159/000486056 https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3 https://www.karger.com/Article/FullText/486056 https://doaj.org/toc/1015-8987 https://doaj.org/toc/1421-9778 |
remote_bool |
true |
author2 |
Jiarong Mao Jiamei Lu Jie Gao Dan Zhu Lifang Tian Zhao Chen Lining Jia Li Wang Rongguo Fu |
author2Str |
Jiarong Mao Jiamei Lu Jie Gao Dan Zhu Lifang Tian Zhao Chen Lining Jia Li Wang Rongguo Fu |
ppnlink |
300189702 |
callnumber-subject |
QP - Physiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1159/000486056 |
callnumber-a |
QP1-981 |
up_date |
2024-07-04T01:16:56.227Z |
_version_ |
1803609247560237056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04499981X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501183415.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1159/000486056</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04499981X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17a46041e7f641bf8bf61d9e681780a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP1-981</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Linting Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rosiglitazone Inhibits Angiotensin II-Induced Proliferation of Glomerular Mesangial Cells via the Gαq/Plcβ4/TRPC Signaling Pathway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background/Aims: Mesangial cell proliferation and extracellular matrix accumulation (ECM) deposition play an important role in the pathogenesis of glomerulosclerosis. TRPC and PPAR-γ can regulate cell proliferation. Angiotensin II (AngII) can induce mesangial cell proliferation and affect TRPC expression. However, the mechanism has not been fully elucidated. This study was designed to investigate the role of TRPC and the effect of rosiglitazone (RSG) in the proliferation of rat glomerular mesangial cells (HBZY-1) that were stimulated by AngII and the underlying mechanisms. Methods: Immunofluorescence staining and qRT-PCR were performed to examine the expression levels of TRPCs in HBZY-1. Gene expression levels of TRPC, PPAR-γ, RGS4 (regulators of G protein signaling), the GPCR/Gαq/PLCβ4/TRPC signaling pathway and major downstream molecules (PCNA, SKP2, P21 and P27) were detected by qRT-PCR and western blotting. Additionally, changes in intracellular Ca2+ levels were determined through Fluo-4 Ca2+ imaging, and the cell cycle was analyzed by flow cytometry. Results: Our results found that TRPC1 and 6 were at higher expression levels in HBZY-1 cells. Following AngII stimulation, there were increased levels of TRPC1 and 6, Ca2+ entry, PCNA and SKP2, decreased expression levels of P21 and P27 and a reduced G0/G1 percentage. Silencing TRPC1 and 6 by siRNAs led to decrease in Ca2+ influx, G0/G1 cell cycle arrest and cell proliferation. Notably, PPAR-γ activation by RSG upregulated RGS4 expression, which can interact with the Gαq family to inhibit the Gαq-mediated signaling cascade. The results were similar to silencing TRPC1 and 6 by siRNAs. Conclusion: All these results indicate that RSG could inhibit HBZY-1 cell proliferation via the Gαq/PLCβ4/TRPC signaling pathway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RSG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TRPC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HBZY-1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proliferation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PPAR-γ</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RGS4</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physiology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiarong Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiamei Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dan Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lifang Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lining Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongguo Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cellular Physiology and Biochemistry</subfield><subfield code="d">Cell Physiol Biochem Press GmbH & Co KG, 2002</subfield><subfield code="g">44(2017), 6, Seite 2228-2242</subfield><subfield code="w">(DE-627)300189702</subfield><subfield code="w">(DE-600)1482056-0</subfield><subfield code="x">14219778</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2228-2242</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1159/000486056</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17a46041e7f641bf8bf61d9e681780a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.karger.com/Article/FullText/486056</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1015-8987</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1421-9778</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">2228-2242</subfield></datafield></record></collection>
|
score |
7.401038 |