Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants
Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a rol...
Ausführliche Beschreibung
Autor*in: |
Andrea Fontana [verfasserIn] Mirko Manchia [verfasserIn] Concetta Panebianco [verfasserIn] Pasquale Paribello [verfasserIn] Carlo Arzedi [verfasserIn] Eleonora Cossu [verfasserIn] Mario Garzilli [verfasserIn] Maria Antonietta Montis [verfasserIn] Andrea Mura [verfasserIn] Claudia Pisanu [verfasserIn] Donatella Congiu [verfasserIn] Massimiliano Copetti [verfasserIn] Federica Pinna [verfasserIn] Bernardo Carpiniello [verfasserIn] Alessio Squassina [verfasserIn] Valerio Pazienza [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biomedicines - MDPI AG, 2014, 8(2020), 9, p 311 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:9, p 311 |
Links: |
---|
DOI / URN: |
10.3390/biomedicines8090311 |
---|
Katalog-ID: |
DOAJ045171017 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ045171017 | ||
003 | DE-627 | ||
005 | 20240412214805.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/biomedicines8090311 |2 doi | |
035 | |a (DE-627)DOAJ045171017 | ||
035 | |a (DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Andrea Fontana |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. | ||
650 | 4 | |a major depressive disorder | |
650 | 4 | |a antidepressant resistance | |
650 | 4 | |a microbiota | |
650 | 4 | |a gut-brain axis | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Mirko Manchia |e verfasserin |4 aut | |
700 | 0 | |a Concetta Panebianco |e verfasserin |4 aut | |
700 | 0 | |a Pasquale Paribello |e verfasserin |4 aut | |
700 | 0 | |a Carlo Arzedi |e verfasserin |4 aut | |
700 | 0 | |a Eleonora Cossu |e verfasserin |4 aut | |
700 | 0 | |a Mario Garzilli |e verfasserin |4 aut | |
700 | 0 | |a Maria Antonietta Montis |e verfasserin |4 aut | |
700 | 0 | |a Andrea Mura |e verfasserin |4 aut | |
700 | 0 | |a Claudia Pisanu |e verfasserin |4 aut | |
700 | 0 | |a Donatella Congiu |e verfasserin |4 aut | |
700 | 0 | |a Massimiliano Copetti |e verfasserin |4 aut | |
700 | 0 | |a Federica Pinna |e verfasserin |4 aut | |
700 | 0 | |a Bernardo Carpiniello |e verfasserin |4 aut | |
700 | 0 | |a Alessio Squassina |e verfasserin |4 aut | |
700 | 0 | |a Valerio Pazienza |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biomedicines |d MDPI AG, 2014 |g 8(2020), 9, p 311 |w (DE-627)750370483 |w (DE-600)2720867-9 |x 22279059 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:9, p 311 |
856 | 4 | 0 | |u https://doi.org/10.3390/biomedicines8090311 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9059/8/9/311 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9059 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 9, p 311 |
author_variant |
a f af m m mm c p cp p p pp c a ca e c ec m g mg m a m mam a m am c p cp d c dc m c mc f p fp b c bc a s as v p vp |
---|---|
matchkey_str |
article:22279059:2020----::xlrnteoefumcoitimjrersieiodrnitetete |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QH |
publishDate |
2020 |
allfields |
10.3390/biomedicines8090311 doi (DE-627)DOAJ045171017 (DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5 DE-627 ger DE-627 rakwb eng QH301-705.5 Andrea Fontana verfasserin aut Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. major depressive disorder antidepressant resistance microbiota gut-brain axis Biology (General) Mirko Manchia verfasserin aut Concetta Panebianco verfasserin aut Pasquale Paribello verfasserin aut Carlo Arzedi verfasserin aut Eleonora Cossu verfasserin aut Mario Garzilli verfasserin aut Maria Antonietta Montis verfasserin aut Andrea Mura verfasserin aut Claudia Pisanu verfasserin aut Donatella Congiu verfasserin aut Massimiliano Copetti verfasserin aut Federica Pinna verfasserin aut Bernardo Carpiniello verfasserin aut Alessio Squassina verfasserin aut Valerio Pazienza verfasserin aut In Biomedicines MDPI AG, 2014 8(2020), 9, p 311 (DE-627)750370483 (DE-600)2720867-9 22279059 nnns volume:8 year:2020 number:9, p 311 https://doi.org/10.3390/biomedicines8090311 kostenfrei https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5 kostenfrei https://www.mdpi.com/2227-9059/8/9/311 kostenfrei https://doaj.org/toc/2227-9059 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 311 |
spelling |
10.3390/biomedicines8090311 doi (DE-627)DOAJ045171017 (DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5 DE-627 ger DE-627 rakwb eng QH301-705.5 Andrea Fontana verfasserin aut Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. major depressive disorder antidepressant resistance microbiota gut-brain axis Biology (General) Mirko Manchia verfasserin aut Concetta Panebianco verfasserin aut Pasquale Paribello verfasserin aut Carlo Arzedi verfasserin aut Eleonora Cossu verfasserin aut Mario Garzilli verfasserin aut Maria Antonietta Montis verfasserin aut Andrea Mura verfasserin aut Claudia Pisanu verfasserin aut Donatella Congiu verfasserin aut Massimiliano Copetti verfasserin aut Federica Pinna verfasserin aut Bernardo Carpiniello verfasserin aut Alessio Squassina verfasserin aut Valerio Pazienza verfasserin aut In Biomedicines MDPI AG, 2014 8(2020), 9, p 311 (DE-627)750370483 (DE-600)2720867-9 22279059 nnns volume:8 year:2020 number:9, p 311 https://doi.org/10.3390/biomedicines8090311 kostenfrei https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5 kostenfrei https://www.mdpi.com/2227-9059/8/9/311 kostenfrei https://doaj.org/toc/2227-9059 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 311 |
allfields_unstemmed |
10.3390/biomedicines8090311 doi (DE-627)DOAJ045171017 (DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5 DE-627 ger DE-627 rakwb eng QH301-705.5 Andrea Fontana verfasserin aut Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. major depressive disorder antidepressant resistance microbiota gut-brain axis Biology (General) Mirko Manchia verfasserin aut Concetta Panebianco verfasserin aut Pasquale Paribello verfasserin aut Carlo Arzedi verfasserin aut Eleonora Cossu verfasserin aut Mario Garzilli verfasserin aut Maria Antonietta Montis verfasserin aut Andrea Mura verfasserin aut Claudia Pisanu verfasserin aut Donatella Congiu verfasserin aut Massimiliano Copetti verfasserin aut Federica Pinna verfasserin aut Bernardo Carpiniello verfasserin aut Alessio Squassina verfasserin aut Valerio Pazienza verfasserin aut In Biomedicines MDPI AG, 2014 8(2020), 9, p 311 (DE-627)750370483 (DE-600)2720867-9 22279059 nnns volume:8 year:2020 number:9, p 311 https://doi.org/10.3390/biomedicines8090311 kostenfrei https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5 kostenfrei https://www.mdpi.com/2227-9059/8/9/311 kostenfrei https://doaj.org/toc/2227-9059 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 311 |
allfieldsGer |
10.3390/biomedicines8090311 doi (DE-627)DOAJ045171017 (DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5 DE-627 ger DE-627 rakwb eng QH301-705.5 Andrea Fontana verfasserin aut Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. major depressive disorder antidepressant resistance microbiota gut-brain axis Biology (General) Mirko Manchia verfasserin aut Concetta Panebianco verfasserin aut Pasquale Paribello verfasserin aut Carlo Arzedi verfasserin aut Eleonora Cossu verfasserin aut Mario Garzilli verfasserin aut Maria Antonietta Montis verfasserin aut Andrea Mura verfasserin aut Claudia Pisanu verfasserin aut Donatella Congiu verfasserin aut Massimiliano Copetti verfasserin aut Federica Pinna verfasserin aut Bernardo Carpiniello verfasserin aut Alessio Squassina verfasserin aut Valerio Pazienza verfasserin aut In Biomedicines MDPI AG, 2014 8(2020), 9, p 311 (DE-627)750370483 (DE-600)2720867-9 22279059 nnns volume:8 year:2020 number:9, p 311 https://doi.org/10.3390/biomedicines8090311 kostenfrei https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5 kostenfrei https://www.mdpi.com/2227-9059/8/9/311 kostenfrei https://doaj.org/toc/2227-9059 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 311 |
allfieldsSound |
10.3390/biomedicines8090311 doi (DE-627)DOAJ045171017 (DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5 DE-627 ger DE-627 rakwb eng QH301-705.5 Andrea Fontana verfasserin aut Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. major depressive disorder antidepressant resistance microbiota gut-brain axis Biology (General) Mirko Manchia verfasserin aut Concetta Panebianco verfasserin aut Pasquale Paribello verfasserin aut Carlo Arzedi verfasserin aut Eleonora Cossu verfasserin aut Mario Garzilli verfasserin aut Maria Antonietta Montis verfasserin aut Andrea Mura verfasserin aut Claudia Pisanu verfasserin aut Donatella Congiu verfasserin aut Massimiliano Copetti verfasserin aut Federica Pinna verfasserin aut Bernardo Carpiniello verfasserin aut Alessio Squassina verfasserin aut Valerio Pazienza verfasserin aut In Biomedicines MDPI AG, 2014 8(2020), 9, p 311 (DE-627)750370483 (DE-600)2720867-9 22279059 nnns volume:8 year:2020 number:9, p 311 https://doi.org/10.3390/biomedicines8090311 kostenfrei https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5 kostenfrei https://www.mdpi.com/2227-9059/8/9/311 kostenfrei https://doaj.org/toc/2227-9059 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 9, p 311 |
language |
English |
source |
In Biomedicines 8(2020), 9, p 311 volume:8 year:2020 number:9, p 311 |
sourceStr |
In Biomedicines 8(2020), 9, p 311 volume:8 year:2020 number:9, p 311 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
major depressive disorder antidepressant resistance microbiota gut-brain axis Biology (General) |
isfreeaccess_bool |
true |
container_title |
Biomedicines |
authorswithroles_txt_mv |
Andrea Fontana @@aut@@ Mirko Manchia @@aut@@ Concetta Panebianco @@aut@@ Pasquale Paribello @@aut@@ Carlo Arzedi @@aut@@ Eleonora Cossu @@aut@@ Mario Garzilli @@aut@@ Maria Antonietta Montis @@aut@@ Andrea Mura @@aut@@ Claudia Pisanu @@aut@@ Donatella Congiu @@aut@@ Massimiliano Copetti @@aut@@ Federica Pinna @@aut@@ Bernardo Carpiniello @@aut@@ Alessio Squassina @@aut@@ Valerio Pazienza @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
750370483 |
id |
DOAJ045171017 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045171017</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412214805.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biomedicines8090311</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045171017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andrea Fontana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">major depressive disorder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antidepressant resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbiota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gut-brain axis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirko Manchia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Concetta Panebianco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pasquale Paribello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carlo Arzedi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eleonora Cossu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario Garzilli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Antonietta Montis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Mura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Pisanu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donatella Congiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Massimiliano Copetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Federica Pinna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bernardo Carpiniello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessio Squassina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Pazienza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biomedicines</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">8(2020), 9, p 311</subfield><subfield code="w">(DE-627)750370483</subfield><subfield code="w">(DE-600)2720867-9</subfield><subfield code="x">22279059</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 311</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biomedicines8090311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9059/8/9/311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9059</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 311</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Andrea Fontana |
spellingShingle |
Andrea Fontana misc QH301-705.5 misc major depressive disorder misc antidepressant resistance misc microbiota misc gut-brain axis misc Biology (General) Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants |
authorStr |
Andrea Fontana |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750370483 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
22279059 |
topic_title |
QH301-705.5 Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants major depressive disorder antidepressant resistance microbiota gut-brain axis |
topic |
misc QH301-705.5 misc major depressive disorder misc antidepressant resistance misc microbiota misc gut-brain axis misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc major depressive disorder misc antidepressant resistance misc microbiota misc gut-brain axis misc Biology (General) |
topic_browse |
misc QH301-705.5 misc major depressive disorder misc antidepressant resistance misc microbiota misc gut-brain axis misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomedicines |
hierarchy_parent_id |
750370483 |
hierarchy_top_title |
Biomedicines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750370483 (DE-600)2720867-9 |
title |
Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants |
ctrlnum |
(DE-627)DOAJ045171017 (DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5 |
title_full |
Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants |
author_sort |
Andrea Fontana |
journal |
Biomedicines |
journalStr |
Biomedicines |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Andrea Fontana Mirko Manchia Concetta Panebianco Pasquale Paribello Carlo Arzedi Eleonora Cossu Mario Garzilli Maria Antonietta Montis Andrea Mura Claudia Pisanu Donatella Congiu Massimiliano Copetti Federica Pinna Bernardo Carpiniello Alessio Squassina Valerio Pazienza |
container_volume |
8 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Andrea Fontana |
doi_str_mv |
10.3390/biomedicines8090311 |
author2-role |
verfasserin |
title_sort |
exploring the role of gut microbiota in major depressive disorder and in treatment resistance to antidepressants |
callnumber |
QH301-705.5 |
title_auth |
Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants |
abstract |
Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. |
abstractGer |
Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. |
abstract_unstemmed |
Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 311 |
title_short |
Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants |
url |
https://doi.org/10.3390/biomedicines8090311 https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5 https://www.mdpi.com/2227-9059/8/9/311 https://doaj.org/toc/2227-9059 |
remote_bool |
true |
author2 |
Mirko Manchia Concetta Panebianco Pasquale Paribello Carlo Arzedi Eleonora Cossu Mario Garzilli Maria Antonietta Montis Andrea Mura Claudia Pisanu Donatella Congiu Massimiliano Copetti Federica Pinna Bernardo Carpiniello Alessio Squassina Valerio Pazienza |
author2Str |
Mirko Manchia Concetta Panebianco Pasquale Paribello Carlo Arzedi Eleonora Cossu Mario Garzilli Maria Antonietta Montis Andrea Mura Claudia Pisanu Donatella Congiu Massimiliano Copetti Federica Pinna Bernardo Carpiniello Alessio Squassina Valerio Pazienza |
ppnlink |
750370483 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/biomedicines8090311 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T13:24:05.206Z |
_version_ |
1803564398898315264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045171017</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412214805.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biomedicines8090311</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045171017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a334c3a02aa4c629b653cfbb67ba1c5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Andrea Fontana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of <i<Paenibacillaceae </i<and <i<Flavobacteriaceaea</i<, for the genus <i<Fenollaria</i<, and the species <i<Flintibacter butyricus</i<, <i<Christensenella timonensis</i<, and <i<Eisenbergiella massiliensis</i< among others. The phyla <i<Proteobacteria, Tenericutes </i<and the family <i<Peptostreptococcaceae</i< were more abundant in TR, whereas the phylum <i<Actinobacteria</i< was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">major depressive disorder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antidepressant resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbiota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gut-brain axis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirko Manchia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Concetta Panebianco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pasquale Paribello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carlo Arzedi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eleonora Cossu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario Garzilli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Antonietta Montis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Mura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Pisanu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donatella Congiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Massimiliano Copetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Federica Pinna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bernardo Carpiniello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessio Squassina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Pazienza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biomedicines</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">8(2020), 9, p 311</subfield><subfield code="w">(DE-627)750370483</subfield><subfield code="w">(DE-600)2720867-9</subfield><subfield code="x">22279059</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 311</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biomedicines8090311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a334c3a02aa4c629b653cfbb67ba1c5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9059/8/9/311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9059</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 311</subfield></datafield></record></collection>
|
score |
7.402128 |