Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems
Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance....
Ausführliche Beschreibung
Autor*in: |
Ali. F. Almutairi [verfasserIn] A. Krishna [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 15 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:15 |
Links: |
---|
DOI / URN: |
10.1038/s41598-022-08248-3 |
---|
Katalog-ID: |
DOAJ045461880 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ045461880 | ||
003 | DE-627 | ||
005 | 20230308092803.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-022-08248-3 |2 doi | |
035 | |a (DE-627)DOAJ045461880 | ||
035 | |a (DE-599)DOAJ3366dac17bb3431283d0831417207202 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Ali. F. Almutairi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a A. Krishna |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 15 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:15 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-08248-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3366dac17bb3431283d0831417207202 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-08248-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 15 |
author_variant |
a f a afa a k ak |
---|---|
matchkey_str |
article:20452322:2022----::itrdrhgnlaeedvsomlilxnfwmehiufrgnb |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-022-08248-3 doi (DE-627)DOAJ045461880 (DE-599)DOAJ3366dac17bb3431283d0831417207202 DE-627 ger DE-627 rakwb eng Ali. F. Almutairi verfasserin aut Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. Medicine R Science Q A. Krishna verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:15 https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/article/3366dac17bb3431283d0831417207202 kostenfrei https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 15 |
spelling |
10.1038/s41598-022-08248-3 doi (DE-627)DOAJ045461880 (DE-599)DOAJ3366dac17bb3431283d0831417207202 DE-627 ger DE-627 rakwb eng Ali. F. Almutairi verfasserin aut Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. Medicine R Science Q A. Krishna verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:15 https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/article/3366dac17bb3431283d0831417207202 kostenfrei https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 15 |
allfields_unstemmed |
10.1038/s41598-022-08248-3 doi (DE-627)DOAJ045461880 (DE-599)DOAJ3366dac17bb3431283d0831417207202 DE-627 ger DE-627 rakwb eng Ali. F. Almutairi verfasserin aut Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. Medicine R Science Q A. Krishna verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:15 https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/article/3366dac17bb3431283d0831417207202 kostenfrei https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 15 |
allfieldsGer |
10.1038/s41598-022-08248-3 doi (DE-627)DOAJ045461880 (DE-599)DOAJ3366dac17bb3431283d0831417207202 DE-627 ger DE-627 rakwb eng Ali. F. Almutairi verfasserin aut Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. Medicine R Science Q A. Krishna verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:15 https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/article/3366dac17bb3431283d0831417207202 kostenfrei https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 15 |
allfieldsSound |
10.1038/s41598-022-08248-3 doi (DE-627)DOAJ045461880 (DE-599)DOAJ3366dac17bb3431283d0831417207202 DE-627 ger DE-627 rakwb eng Ali. F. Almutairi verfasserin aut Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. Medicine R Science Q A. Krishna verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:15 https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/article/3366dac17bb3431283d0831417207202 kostenfrei https://doi.org/10.1038/s41598-022-08248-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 15 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 15 volume:12 year:2022 number:1 pages:15 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 15 volume:12 year:2022 number:1 pages:15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Ali. F. Almutairi @@aut@@ A. Krishna @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ045461880 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045461880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308092803.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-08248-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045461880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3366dac17bb3431283d0831417207202</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ali. F. Almutairi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Krishna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 15</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08248-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3366dac17bb3431283d0831417207202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08248-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
author |
Ali. F. Almutairi |
spellingShingle |
Ali. F. Almutairi misc Medicine misc R misc Science misc Q Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems |
authorStr |
Ali. F. Almutairi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems |
ctrlnum |
(DE-627)DOAJ045461880 (DE-599)DOAJ3366dac17bb3431283d0831417207202 |
title_full |
Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems |
author_sort |
Ali. F. Almutairi |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Ali. F. Almutairi A. Krishna |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Ali. F. Almutairi |
doi_str_mv |
10.1038/s41598-022-08248-3 |
author2-role |
verfasserin |
title_sort |
filtered-orthogonal wavelet division multiplexing (f-owdm) technique for 5g and beyond communication systems |
title_auth |
Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems |
abstract |
Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. |
abstractGer |
Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. |
abstract_unstemmed |
Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems |
url |
https://doi.org/10.1038/s41598-022-08248-3 https://doaj.org/article/3366dac17bb3431283d0831417207202 https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
A. Krishna |
author2Str |
A. Krishna |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-022-08248-3 |
up_date |
2024-07-03T15:06:41.459Z |
_version_ |
1803570854192218112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045461880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308092803.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-08248-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045461880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3366dac17bb3431283d0831417207202</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ali. F. Almutairi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Filtered-orthogonal frequency division multiplexing (F-OFDM) is one of the most protruding multicarrier modulation (MCM) techniques for fifth-generation and beyond wireless communication. However, it possesses a high peak-to-average power ratio (PAPR), which results in its poor performance. Thus, a novel wavelet based MCM technique, namely filtered orthogonal wavelet division multiplexing (F-OWDM), is proposed as an efficient alternative to conventional F-OFDM (C-F-OFDM) to reduce the PAPR. In this model, the traditional Fourier transforms (FT) as used in C-F-OFDM was replaced with Wavelet Transforms. The proposed F-OWDM system does not require a cyclic prefix because of the overlapping sub-carriers in the time and frequency domains. Thus, the F-OWDM system exhibits higher bandwidth efficiency. In this paper, the performance of the F-OWDM system with various wavelets from different wavelet families under an additive white Gaussian noise and flat fading channel is investigated. The PAPR and bit error rate (BER) of the F-OWDM system using Haar, discrete Meyer, bi-orthogonal, symlet, and Daubechies wavelets are analyzed. A comparative study between F-OWDM and C-F-OFDM is also presented. From the results, it is able to prove that F-OWDM has the advantage of lower PAPR and lower bit error rate than the C-F-OFDM system.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Krishna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 15</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08248-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3366dac17bb3431283d0831417207202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08248-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
score |
7.4022093 |