Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region
This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images...
Ausführliche Beschreibung
Autor*in: |
Mohamed A. Sherief [verfasserIn] Ahmed K. Abdel-Gawad [verfasserIn] Amr Abd-Elrahman [verfasserIn] Ibrahim F. Shaker [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 3(2011), 4, Seite 781-791 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2011 ; number:4 ; pages:781-791 |
Links: |
---|
DOI / URN: |
10.3390/rs3040781 |
---|
Katalog-ID: |
DOAJ045586527 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ045586527 | ||
003 | DE-627 | ||
005 | 20230308093638.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs3040781 |2 doi | |
035 | |a (DE-627)DOAJ045586527 | ||
035 | |a (DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Mohamed A. Sherief |e verfasserin |4 aut | |
245 | 1 | 0 | |a Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. | ||
650 | 4 | |a IKONOS | |
650 | 4 | |a surface model | |
650 | 4 | |a building detection | |
650 | 4 | |a positional accuracy | |
650 | 4 | |a building height | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Ahmed K. Abdel-Gawad |e verfasserin |4 aut | |
700 | 0 | |a Amr Abd-Elrahman |e verfasserin |4 aut | |
700 | 0 | |a Ibrahim F. Shaker |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 3(2011), 4, Seite 781-791 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2011 |g number:4 |g pages:781-791 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs3040781 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2072-4292/3/4/781/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2011 |e 4 |h 781-791 |
author_variant |
m a s mas a k a g akag a a e aae i f s ifs |
---|---|
matchkey_str |
article:20724292:2011----::uligxrcinrmiheouinpciaeihgdniyeietaa |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.3390/rs3040781 doi (DE-627)DOAJ045586527 (DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f DE-627 ger DE-627 rakwb eng Mohamed A. Sherief verfasserin aut Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. IKONOS surface model building detection positional accuracy building height Science Q Ahmed K. Abdel-Gawad verfasserin aut Amr Abd-Elrahman verfasserin aut Ibrahim F. Shaker verfasserin aut In Remote Sensing MDPI AG, 2009 3(2011), 4, Seite 781-791 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:3 year:2011 number:4 pages:781-791 https://doi.org/10.3390/rs3040781 kostenfrei https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f kostenfrei http://www.mdpi.com/2072-4292/3/4/781/ kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2011 4 781-791 |
spelling |
10.3390/rs3040781 doi (DE-627)DOAJ045586527 (DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f DE-627 ger DE-627 rakwb eng Mohamed A. Sherief verfasserin aut Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. IKONOS surface model building detection positional accuracy building height Science Q Ahmed K. Abdel-Gawad verfasserin aut Amr Abd-Elrahman verfasserin aut Ibrahim F. Shaker verfasserin aut In Remote Sensing MDPI AG, 2009 3(2011), 4, Seite 781-791 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:3 year:2011 number:4 pages:781-791 https://doi.org/10.3390/rs3040781 kostenfrei https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f kostenfrei http://www.mdpi.com/2072-4292/3/4/781/ kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2011 4 781-791 |
allfields_unstemmed |
10.3390/rs3040781 doi (DE-627)DOAJ045586527 (DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f DE-627 ger DE-627 rakwb eng Mohamed A. Sherief verfasserin aut Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. IKONOS surface model building detection positional accuracy building height Science Q Ahmed K. Abdel-Gawad verfasserin aut Amr Abd-Elrahman verfasserin aut Ibrahim F. Shaker verfasserin aut In Remote Sensing MDPI AG, 2009 3(2011), 4, Seite 781-791 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:3 year:2011 number:4 pages:781-791 https://doi.org/10.3390/rs3040781 kostenfrei https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f kostenfrei http://www.mdpi.com/2072-4292/3/4/781/ kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2011 4 781-791 |
allfieldsGer |
10.3390/rs3040781 doi (DE-627)DOAJ045586527 (DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f DE-627 ger DE-627 rakwb eng Mohamed A. Sherief verfasserin aut Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. IKONOS surface model building detection positional accuracy building height Science Q Ahmed K. Abdel-Gawad verfasserin aut Amr Abd-Elrahman verfasserin aut Ibrahim F. Shaker verfasserin aut In Remote Sensing MDPI AG, 2009 3(2011), 4, Seite 781-791 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:3 year:2011 number:4 pages:781-791 https://doi.org/10.3390/rs3040781 kostenfrei https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f kostenfrei http://www.mdpi.com/2072-4292/3/4/781/ kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2011 4 781-791 |
allfieldsSound |
10.3390/rs3040781 doi (DE-627)DOAJ045586527 (DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f DE-627 ger DE-627 rakwb eng Mohamed A. Sherief verfasserin aut Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. IKONOS surface model building detection positional accuracy building height Science Q Ahmed K. Abdel-Gawad verfasserin aut Amr Abd-Elrahman verfasserin aut Ibrahim F. Shaker verfasserin aut In Remote Sensing MDPI AG, 2009 3(2011), 4, Seite 781-791 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:3 year:2011 number:4 pages:781-791 https://doi.org/10.3390/rs3040781 kostenfrei https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f kostenfrei http://www.mdpi.com/2072-4292/3/4/781/ kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2011 4 781-791 |
language |
English |
source |
In Remote Sensing 3(2011), 4, Seite 781-791 volume:3 year:2011 number:4 pages:781-791 |
sourceStr |
In Remote Sensing 3(2011), 4, Seite 781-791 volume:3 year:2011 number:4 pages:781-791 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
IKONOS surface model building detection positional accuracy building height Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Mohamed A. Sherief @@aut@@ Ahmed K. Abdel-Gawad @@aut@@ Amr Abd-Elrahman @@aut@@ Ibrahim F. Shaker @@aut@@ |
publishDateDaySort_date |
2011-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ045586527 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045586527</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308093638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs3040781</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045586527</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohamed A. Sherief</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IKONOS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">positional accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building height</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmed K. Abdel-Gawad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amr Abd-Elrahman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ibrahim F. Shaker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">3(2011), 4, Seite 781-791</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:781-791</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs3040781</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/3/4/781/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="h">781-791</subfield></datafield></record></collection>
|
author |
Mohamed A. Sherief |
spellingShingle |
Mohamed A. Sherief misc IKONOS misc surface model misc building detection misc positional accuracy misc building height misc Science misc Q Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region |
authorStr |
Mohamed A. Sherief |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region IKONOS surface model building detection positional accuracy building height |
topic |
misc IKONOS misc surface model misc building detection misc positional accuracy misc building height misc Science misc Q |
topic_unstemmed |
misc IKONOS misc surface model misc building detection misc positional accuracy misc building height misc Science misc Q |
topic_browse |
misc IKONOS misc surface model misc building detection misc positional accuracy misc building height misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region |
ctrlnum |
(DE-627)DOAJ045586527 (DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f |
title_full |
Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region |
author_sort |
Mohamed A. Sherief |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
781 |
author_browse |
Mohamed A. Sherief Ahmed K. Abdel-Gawad Amr Abd-Elrahman Ibrahim F. Shaker |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohamed A. Sherief |
doi_str_mv |
10.3390/rs3040781 |
author2-role |
verfasserin |
title_sort |
building extraction from high resolution space images in high density residential areas in the great cairo region |
title_auth |
Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region |
abstract |
This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. |
abstractGer |
This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. |
abstract_unstemmed |
This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region |
url |
https://doi.org/10.3390/rs3040781 https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f http://www.mdpi.com/2072-4292/3/4/781/ https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Ahmed K. Abdel-Gawad Amr Abd-Elrahman Ibrahim F. Shaker |
author2Str |
Ahmed K. Abdel-Gawad Amr Abd-Elrahman Ibrahim F. Shaker |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs3040781 |
up_date |
2024-07-03T15:49:22.743Z |
_version_ |
1803573539892101120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045586527</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308093638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs3040781</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045586527</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ddeff44d5b242718c897cf1f302b13f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohamed A. Sherief</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap) IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM) extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE) for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IKONOS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">positional accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building height</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmed K. Abdel-Gawad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amr Abd-Elrahman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ibrahim F. Shaker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">3(2011), 4, Seite 781-791</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:781-791</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs3040781</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ddeff44d5b242718c897cf1f302b13f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/3/4/781/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="h">781-791</subfield></datafield></record></collection>
|
score |
7.4013567 |