Performance analysis of a complex queueing system with vacations in random environment
This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing t...
Ausführliche Beschreibung
Autor*in: |
Jianjun Li [verfasserIn] Liwei Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Übergeordnetes Werk: |
In: Advances in Mechanical Engineering - SAGE Publishing, 2009, 9(2017) |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2017 |
Links: |
---|
DOI / URN: |
10.1177/1687814017714167 |
---|
Katalog-ID: |
DOAJ045803781 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ045803781 | ||
003 | DE-627 | ||
005 | 20230308095743.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1177/1687814017714167 |2 doi | |
035 | |a (DE-627)DOAJ045803781 | ||
035 | |a (DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Jianjun Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance analysis of a complex queueing system with vacations in random environment |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. | ||
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Liwei Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advances in Mechanical Engineering |d SAGE Publishing, 2009 |g 9(2017) |w (DE-627)603487076 |w (DE-600)2501620-9 |x 16878140 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2017 |
856 | 4 | 0 | |u https://doi.org/10.1177/1687814017714167 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1177/1687814017714167 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-8140 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2706 | ||
912 | |a GBV_ILN_2707 | ||
912 | |a GBV_ILN_2890 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2017 |
author_variant |
j l jl l l ll |
---|---|
matchkey_str |
article:16878140:2017----::efracaayioaopeqeenssewtvcto |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
TJ |
publishDate |
2017 |
allfields |
10.1177/1687814017714167 doi (DE-627)DOAJ045803781 (DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7 DE-627 ger DE-627 rakwb eng TJ1-1570 Jianjun Li verfasserin aut Performance analysis of a complex queueing system with vacations in random environment 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. Mechanical engineering and machinery Liwei Liu verfasserin aut In Advances in Mechanical Engineering SAGE Publishing, 2009 9(2017) (DE-627)603487076 (DE-600)2501620-9 16878140 nnns volume:9 year:2017 https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7 kostenfrei https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/toc/1687-8140 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 |
spelling |
10.1177/1687814017714167 doi (DE-627)DOAJ045803781 (DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7 DE-627 ger DE-627 rakwb eng TJ1-1570 Jianjun Li verfasserin aut Performance analysis of a complex queueing system with vacations in random environment 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. Mechanical engineering and machinery Liwei Liu verfasserin aut In Advances in Mechanical Engineering SAGE Publishing, 2009 9(2017) (DE-627)603487076 (DE-600)2501620-9 16878140 nnns volume:9 year:2017 https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7 kostenfrei https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/toc/1687-8140 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 |
allfields_unstemmed |
10.1177/1687814017714167 doi (DE-627)DOAJ045803781 (DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7 DE-627 ger DE-627 rakwb eng TJ1-1570 Jianjun Li verfasserin aut Performance analysis of a complex queueing system with vacations in random environment 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. Mechanical engineering and machinery Liwei Liu verfasserin aut In Advances in Mechanical Engineering SAGE Publishing, 2009 9(2017) (DE-627)603487076 (DE-600)2501620-9 16878140 nnns volume:9 year:2017 https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7 kostenfrei https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/toc/1687-8140 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 |
allfieldsGer |
10.1177/1687814017714167 doi (DE-627)DOAJ045803781 (DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7 DE-627 ger DE-627 rakwb eng TJ1-1570 Jianjun Li verfasserin aut Performance analysis of a complex queueing system with vacations in random environment 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. Mechanical engineering and machinery Liwei Liu verfasserin aut In Advances in Mechanical Engineering SAGE Publishing, 2009 9(2017) (DE-627)603487076 (DE-600)2501620-9 16878140 nnns volume:9 year:2017 https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7 kostenfrei https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/toc/1687-8140 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 |
allfieldsSound |
10.1177/1687814017714167 doi (DE-627)DOAJ045803781 (DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7 DE-627 ger DE-627 rakwb eng TJ1-1570 Jianjun Li verfasserin aut Performance analysis of a complex queueing system with vacations in random environment 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. Mechanical engineering and machinery Liwei Liu verfasserin aut In Advances in Mechanical Engineering SAGE Publishing, 2009 9(2017) (DE-627)603487076 (DE-600)2501620-9 16878140 nnns volume:9 year:2017 https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7 kostenfrei https://doi.org/10.1177/1687814017714167 kostenfrei https://doaj.org/toc/1687-8140 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 |
language |
English |
source |
In Advances in Mechanical Engineering 9(2017) volume:9 year:2017 |
sourceStr |
In Advances in Mechanical Engineering 9(2017) volume:9 year:2017 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Advances in Mechanical Engineering |
authorswithroles_txt_mv |
Jianjun Li @@aut@@ Liwei Liu @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
603487076 |
id |
DOAJ045803781 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045803781</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308095743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/1687814017714167</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045803781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianjun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance analysis of a complex queueing system with vacations in random environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liwei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Mechanical Engineering</subfield><subfield code="d">SAGE Publishing, 2009</subfield><subfield code="g">9(2017)</subfield><subfield code="w">(DE-627)603487076</subfield><subfield code="w">(DE-600)2501620-9</subfield><subfield code="x">16878140</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/1687814017714167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/1687814017714167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8140</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2707</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2890</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2017</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianjun Li |
spellingShingle |
Jianjun Li misc TJ1-1570 misc Mechanical engineering and machinery Performance analysis of a complex queueing system with vacations in random environment |
authorStr |
Jianjun Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)603487076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
16878140 |
topic_title |
TJ1-1570 Performance analysis of a complex queueing system with vacations in random environment |
topic |
misc TJ1-1570 misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in Mechanical Engineering |
hierarchy_parent_id |
603487076 |
hierarchy_top_title |
Advances in Mechanical Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)603487076 (DE-600)2501620-9 |
title |
Performance analysis of a complex queueing system with vacations in random environment |
ctrlnum |
(DE-627)DOAJ045803781 (DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7 |
title_full |
Performance analysis of a complex queueing system with vacations in random environment |
author_sort |
Jianjun Li |
journal |
Advances in Mechanical Engineering |
journalStr |
Advances in Mechanical Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Jianjun Li Liwei Liu |
container_volume |
9 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianjun Li |
doi_str_mv |
10.1177/1687814017714167 |
author2-role |
verfasserin |
title_sort |
performance analysis of a complex queueing system with vacations in random environment |
callnumber |
TJ1-1570 |
title_auth |
Performance analysis of a complex queueing system with vacations in random environment |
abstract |
This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. |
abstractGer |
This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. |
abstract_unstemmed |
This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Performance analysis of a complex queueing system with vacations in random environment |
url |
https://doi.org/10.1177/1687814017714167 https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7 https://doaj.org/toc/1687-8140 |
remote_bool |
true |
author2 |
Liwei Liu |
author2Str |
Liwei Liu |
ppnlink |
603487076 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1177/1687814017714167 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-03T17:08:04.566Z |
_version_ |
1803578491081326592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045803781</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308095743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/1687814017714167</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045803781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb3e106b117e4f9ebf70727933eecbb7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianjun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance analysis of a complex queueing system with vacations in random environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article studies a complex queueing system with vacations in a multi-phase random environment. When the system is in operative phase i , i = 1 , 2 , … , n , customers are served one by one. Whenever the system becomes empty at a service completion instant, the server starts a vacation, causing the system to move to vacation phase. When a vacation ends, if the system is empty, another begins. Otherwise, the system moves from the vacation phase to some operative phase i with probability q i , i = 1 , 2 , … , n . Using the method of probability generating function, we obtain the distribution for the steady-state queue length at arbitrary epoch. We also derive the distributions for the stationary sojourn time and the length of the server’s working time in a service cycle, respectively. Finally, we present some special cases and numerical examples.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liwei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Mechanical Engineering</subfield><subfield code="d">SAGE Publishing, 2009</subfield><subfield code="g">9(2017)</subfield><subfield code="w">(DE-627)603487076</subfield><subfield code="w">(DE-600)2501620-9</subfield><subfield code="x">16878140</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/1687814017714167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db3e106b117e4f9ebf70727933eecbb7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1177/1687814017714167</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8140</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2707</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2890</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2017</subfield></datafield></record></collection>
|
score |
7.400463 |