Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild
Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented mo...
Ausführliche Beschreibung
Autor*in: |
Yeonchan Ahn [verfasserIn] Sang-Goo Lee [verfasserIn] Junho Shim [verfasserIn] Jaehui Park [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 131374-131385 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:131374-131385 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3228964 |
---|
Katalog-ID: |
DOAJ045987246 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ045987246 | ||
003 | DE-627 | ||
005 | 20230502085845.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3228964 |2 doi | |
035 | |a (DE-627)DOAJ045987246 | ||
035 | |a (DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Yeonchan Ahn |e verfasserin |4 aut | |
245 | 1 | 0 | |a Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. | ||
650 | 4 | |a Conversation | |
650 | 4 | |a knowledge-grounded conversation | |
650 | 4 | |a knowledge retrieval | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Sang-Goo Lee |e verfasserin |4 aut | |
700 | 0 | |a Junho Shim |e verfasserin |4 aut | |
700 | 0 | |a Jaehui Park |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 131374-131385 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:131374-131385 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3228964 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9982598/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 131374-131385 |
author_variant |
y a ya s g l sgl j s js j p jp |
---|---|
matchkey_str |
article:21693536:2022----::ereaagetdepneeeainokolderudd |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3228964 doi (DE-627)DOAJ045987246 (DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9 DE-627 ger DE-627 rakwb eng TK1-9971 Yeonchan Ahn verfasserin aut Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. Conversation knowledge-grounded conversation knowledge retrieval Electrical engineering. Electronics. Nuclear engineering Sang-Goo Lee verfasserin aut Junho Shim verfasserin aut Jaehui Park verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 131374-131385 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:131374-131385 https://doi.org/10.1109/ACCESS.2022.3228964 kostenfrei https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9 kostenfrei https://ieeexplore.ieee.org/document/9982598/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 131374-131385 |
spelling |
10.1109/ACCESS.2022.3228964 doi (DE-627)DOAJ045987246 (DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9 DE-627 ger DE-627 rakwb eng TK1-9971 Yeonchan Ahn verfasserin aut Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. Conversation knowledge-grounded conversation knowledge retrieval Electrical engineering. Electronics. Nuclear engineering Sang-Goo Lee verfasserin aut Junho Shim verfasserin aut Jaehui Park verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 131374-131385 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:131374-131385 https://doi.org/10.1109/ACCESS.2022.3228964 kostenfrei https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9 kostenfrei https://ieeexplore.ieee.org/document/9982598/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 131374-131385 |
allfields_unstemmed |
10.1109/ACCESS.2022.3228964 doi (DE-627)DOAJ045987246 (DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9 DE-627 ger DE-627 rakwb eng TK1-9971 Yeonchan Ahn verfasserin aut Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. Conversation knowledge-grounded conversation knowledge retrieval Electrical engineering. Electronics. Nuclear engineering Sang-Goo Lee verfasserin aut Junho Shim verfasserin aut Jaehui Park verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 131374-131385 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:131374-131385 https://doi.org/10.1109/ACCESS.2022.3228964 kostenfrei https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9 kostenfrei https://ieeexplore.ieee.org/document/9982598/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 131374-131385 |
allfieldsGer |
10.1109/ACCESS.2022.3228964 doi (DE-627)DOAJ045987246 (DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9 DE-627 ger DE-627 rakwb eng TK1-9971 Yeonchan Ahn verfasserin aut Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. Conversation knowledge-grounded conversation knowledge retrieval Electrical engineering. Electronics. Nuclear engineering Sang-Goo Lee verfasserin aut Junho Shim verfasserin aut Jaehui Park verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 131374-131385 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:131374-131385 https://doi.org/10.1109/ACCESS.2022.3228964 kostenfrei https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9 kostenfrei https://ieeexplore.ieee.org/document/9982598/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 131374-131385 |
allfieldsSound |
10.1109/ACCESS.2022.3228964 doi (DE-627)DOAJ045987246 (DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9 DE-627 ger DE-627 rakwb eng TK1-9971 Yeonchan Ahn verfasserin aut Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. Conversation knowledge-grounded conversation knowledge retrieval Electrical engineering. Electronics. Nuclear engineering Sang-Goo Lee verfasserin aut Junho Shim verfasserin aut Jaehui Park verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 131374-131385 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:131374-131385 https://doi.org/10.1109/ACCESS.2022.3228964 kostenfrei https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9 kostenfrei https://ieeexplore.ieee.org/document/9982598/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 131374-131385 |
language |
English |
source |
In IEEE Access 10(2022), Seite 131374-131385 volume:10 year:2022 pages:131374-131385 |
sourceStr |
In IEEE Access 10(2022), Seite 131374-131385 volume:10 year:2022 pages:131374-131385 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Conversation knowledge-grounded conversation knowledge retrieval Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Yeonchan Ahn @@aut@@ Sang-Goo Lee @@aut@@ Junho Shim @@aut@@ Jaehui Park @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ045987246 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045987246</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3228964</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045987246</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yeonchan Ahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conversation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">knowledge-grounded conversation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">knowledge retrieval</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Goo Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junho Shim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaehui Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 131374-131385</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:131374-131385</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3228964</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9982598/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">131374-131385</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yeonchan Ahn |
spellingShingle |
Yeonchan Ahn misc TK1-9971 misc Conversation misc knowledge-grounded conversation misc knowledge retrieval misc Electrical engineering. Electronics. Nuclear engineering Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild |
authorStr |
Yeonchan Ahn |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild Conversation knowledge-grounded conversation knowledge retrieval |
topic |
misc TK1-9971 misc Conversation misc knowledge-grounded conversation misc knowledge retrieval misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Conversation misc knowledge-grounded conversation misc knowledge retrieval misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Conversation misc knowledge-grounded conversation misc knowledge retrieval misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild |
ctrlnum |
(DE-627)DOAJ045987246 (DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9 |
title_full |
Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild |
author_sort |
Yeonchan Ahn |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
131374 |
author_browse |
Yeonchan Ahn Sang-Goo Lee Junho Shim Jaehui Park |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Yeonchan Ahn |
doi_str_mv |
10.1109/ACCESS.2022.3228964 |
author2-role |
verfasserin |
title_sort |
retrieval-augmented response generation for knowledge-grounded conversation in the wild |
callnumber |
TK1-9971 |
title_auth |
Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild |
abstract |
Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. |
abstractGer |
Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. |
abstract_unstemmed |
Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild |
url |
https://doi.org/10.1109/ACCESS.2022.3228964 https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9 https://ieeexplore.ieee.org/document/9982598/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Sang-Goo Lee Junho Shim Jaehui Park |
author2Str |
Sang-Goo Lee Junho Shim Jaehui Park |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3228964 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T18:09:28.678Z |
_version_ |
1803582354156945409 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045987246</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3228964</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045987246</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaec92fde4f36460685d52a7d2568ceb9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yeonchan Ahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Retrieval-Augmented Response Generation for Knowledge-Grounded Conversation in the Wild</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Users on the internet usually have conversations on interesting facts or topics along with diverse knowledge from the web. However, most existing knowledge-grounded conversation models consider only a single document regarding the topic of a conversation. The recently proposed retrieval-augmented models generate a response based on multiple documents; however, they ignore the given topic and use only the local context of the conversation. To this end, we introduce a novel retrieval-augmented response generation model that retrieves an appropriate range of documents relevant to both the topic and local context of a conversation and uses them for generating a knowledge-grounded response. Our model first accepts both topic words extracted from the whole conversation and the tokens before the response to yield multiple representations. It then chooses representations of the first N token and ones of keywords from the conversation and document encoders and compares the two groups of representation from the conversation with those groups of the document, respectively. For training, we introduce a new data-weighting scheme to encourage the model to produce knowledge-grounded responses without ground truth knowledge. Both automatic and human evaluation results with a large-scale dataset show that our models can generate more knowledgeable, diverse, and relevant responses compared to the state-of-the-art models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conversation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">knowledge-grounded conversation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">knowledge retrieval</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Goo Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junho Shim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaehui Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 131374-131385</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:131374-131385</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3228964</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aec92fde4f36460685d52a7d2568ceb9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9982598/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">131374-131385</subfield></datafield></record></collection>
|
score |
7.400649 |