Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models
The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is...
Ausführliche Beschreibung
Autor*in: |
Adrian Sandu [verfasserIn] Emil Constantinescu [verfasserIn] Gregory R. Carmichael [verfasserIn] Tianfeng Chai [verfasserIn] Dacian Daescu [verfasserIn] John H. Seinfeld [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Übergeordnetes Werk: |
In: Journal of Algorithms & Computational Technology - SAGE Publishing, 2017, 5(2011) |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2011 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1260/1748-3018.5.4.667 |
---|
Katalog-ID: |
DOAJ045990697 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ045990697 | ||
003 | DE-627 | ||
005 | 20230501200516.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1260/1748-3018.5.4.667 |2 doi | |
035 | |a (DE-627)DOAJ045990697 | ||
035 | |a (DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T57-57.97 | |
050 | 0 | |a QA1-939 | |
100 | 0 | |a Adrian Sandu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. | ||
653 | 0 | |a Applied mathematics. Quantitative methods | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Emil Constantinescu |e verfasserin |4 aut | |
700 | 0 | |a Gregory R. Carmichael |e verfasserin |4 aut | |
700 | 0 | |a Tianfeng Chai |e verfasserin |4 aut | |
700 | 0 | |a Dacian Daescu |e verfasserin |4 aut | |
700 | 0 | |a John H. Seinfeld |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Algorithms & Computational Technology |d SAGE Publishing, 2017 |g 5(2011) |w (DE-627)591513978 |w (DE-600)2478205-1 |x 17483026 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2011 |
856 | 4 | 0 | |u https://doi.org/10.1260/1748-3018.5.4.667 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1260/1748-3018.5.4.667 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1748-3018 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1748-3026 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2098 | ||
912 | |a GBV_ILN_2706 | ||
912 | |a GBV_ILN_2707 | ||
912 | |a GBV_ILN_2890 | ||
912 | |a GBV_ILN_2954 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2011 |
author_variant |
a s as e c ec g r c grc t c tc d d dd j h s jhs |
---|---|
matchkey_str |
article:17483026:2011----::nebeehdfryaidtasmltooceiaosrai |
hierarchy_sort_str |
2011 |
callnumber-subject-code |
T |
publishDate |
2011 |
allfields |
10.1260/1748-3018.5.4.667 doi (DE-627)DOAJ045990697 (DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 Adrian Sandu verfasserin aut Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. Applied mathematics. Quantitative methods Mathematics Emil Constantinescu verfasserin aut Gregory R. Carmichael verfasserin aut Tianfeng Chai verfasserin aut Dacian Daescu verfasserin aut John H. Seinfeld verfasserin aut In Journal of Algorithms & Computational Technology SAGE Publishing, 2017 5(2011) (DE-627)591513978 (DE-600)2478205-1 17483026 nnns volume:5 year:2011 https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b kostenfrei https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/toc/1748-3018 Journal toc kostenfrei https://doaj.org/toc/1748-3026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2034 GBV_ILN_2057 GBV_ILN_2068 GBV_ILN_2098 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_2954 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2011 |
spelling |
10.1260/1748-3018.5.4.667 doi (DE-627)DOAJ045990697 (DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 Adrian Sandu verfasserin aut Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. Applied mathematics. Quantitative methods Mathematics Emil Constantinescu verfasserin aut Gregory R. Carmichael verfasserin aut Tianfeng Chai verfasserin aut Dacian Daescu verfasserin aut John H. Seinfeld verfasserin aut In Journal of Algorithms & Computational Technology SAGE Publishing, 2017 5(2011) (DE-627)591513978 (DE-600)2478205-1 17483026 nnns volume:5 year:2011 https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b kostenfrei https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/toc/1748-3018 Journal toc kostenfrei https://doaj.org/toc/1748-3026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2034 GBV_ILN_2057 GBV_ILN_2068 GBV_ILN_2098 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_2954 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2011 |
allfields_unstemmed |
10.1260/1748-3018.5.4.667 doi (DE-627)DOAJ045990697 (DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 Adrian Sandu verfasserin aut Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. Applied mathematics. Quantitative methods Mathematics Emil Constantinescu verfasserin aut Gregory R. Carmichael verfasserin aut Tianfeng Chai verfasserin aut Dacian Daescu verfasserin aut John H. Seinfeld verfasserin aut In Journal of Algorithms & Computational Technology SAGE Publishing, 2017 5(2011) (DE-627)591513978 (DE-600)2478205-1 17483026 nnns volume:5 year:2011 https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b kostenfrei https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/toc/1748-3018 Journal toc kostenfrei https://doaj.org/toc/1748-3026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2034 GBV_ILN_2057 GBV_ILN_2068 GBV_ILN_2098 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_2954 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2011 |
allfieldsGer |
10.1260/1748-3018.5.4.667 doi (DE-627)DOAJ045990697 (DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 Adrian Sandu verfasserin aut Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. Applied mathematics. Quantitative methods Mathematics Emil Constantinescu verfasserin aut Gregory R. Carmichael verfasserin aut Tianfeng Chai verfasserin aut Dacian Daescu verfasserin aut John H. Seinfeld verfasserin aut In Journal of Algorithms & Computational Technology SAGE Publishing, 2017 5(2011) (DE-627)591513978 (DE-600)2478205-1 17483026 nnns volume:5 year:2011 https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b kostenfrei https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/toc/1748-3018 Journal toc kostenfrei https://doaj.org/toc/1748-3026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2034 GBV_ILN_2057 GBV_ILN_2068 GBV_ILN_2098 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_2954 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2011 |
allfieldsSound |
10.1260/1748-3018.5.4.667 doi (DE-627)DOAJ045990697 (DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b DE-627 ger DE-627 rakwb eng T57-57.97 QA1-939 Adrian Sandu verfasserin aut Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. Applied mathematics. Quantitative methods Mathematics Emil Constantinescu verfasserin aut Gregory R. Carmichael verfasserin aut Tianfeng Chai verfasserin aut Dacian Daescu verfasserin aut John H. Seinfeld verfasserin aut In Journal of Algorithms & Computational Technology SAGE Publishing, 2017 5(2011) (DE-627)591513978 (DE-600)2478205-1 17483026 nnns volume:5 year:2011 https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b kostenfrei https://doi.org/10.1260/1748-3018.5.4.667 kostenfrei https://doaj.org/toc/1748-3018 Journal toc kostenfrei https://doaj.org/toc/1748-3026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2034 GBV_ILN_2057 GBV_ILN_2068 GBV_ILN_2098 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_2954 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2011 |
language |
English |
source |
In Journal of Algorithms & Computational Technology 5(2011) volume:5 year:2011 |
sourceStr |
In Journal of Algorithms & Computational Technology 5(2011) volume:5 year:2011 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Applied mathematics. Quantitative methods Mathematics |
isfreeaccess_bool |
true |
container_title |
Journal of Algorithms & Computational Technology |
authorswithroles_txt_mv |
Adrian Sandu @@aut@@ Emil Constantinescu @@aut@@ Gregory R. Carmichael @@aut@@ Tianfeng Chai @@aut@@ Dacian Daescu @@aut@@ John H. Seinfeld @@aut@@ |
publishDateDaySort_date |
2011-01-01T00:00:00Z |
hierarchy_top_id |
591513978 |
id |
DOAJ045990697 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045990697</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501200516.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1260/1748-3018.5.4.667</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045990697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Adrian Sandu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emil Constantinescu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory R. Carmichael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianfeng Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dacian Daescu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John H. Seinfeld</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Algorithms & Computational Technology</subfield><subfield code="d">SAGE Publishing, 2017</subfield><subfield code="g">5(2011)</subfield><subfield code="w">(DE-627)591513978</subfield><subfield code="w">(DE-600)2478205-1</subfield><subfield code="x">17483026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2011</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1260/1748-3018.5.4.667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1260/1748-3018.5.4.667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-3018</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-3026</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2707</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2890</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2954</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2011</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Adrian Sandu |
spellingShingle |
Adrian Sandu misc T57-57.97 misc QA1-939 misc Applied mathematics. Quantitative methods misc Mathematics Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models |
authorStr |
Adrian Sandu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)591513978 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T57-57 |
illustrated |
Not Illustrated |
issn |
17483026 |
topic_title |
T57-57.97 QA1-939 Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models |
topic |
misc T57-57.97 misc QA1-939 misc Applied mathematics. Quantitative methods misc Mathematics |
topic_unstemmed |
misc T57-57.97 misc QA1-939 misc Applied mathematics. Quantitative methods misc Mathematics |
topic_browse |
misc T57-57.97 misc QA1-939 misc Applied mathematics. Quantitative methods misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Algorithms & Computational Technology |
hierarchy_parent_id |
591513978 |
hierarchy_top_title |
Journal of Algorithms & Computational Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)591513978 (DE-600)2478205-1 |
title |
Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models |
ctrlnum |
(DE-627)DOAJ045990697 (DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b |
title_full |
Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models |
author_sort |
Adrian Sandu |
journal |
Journal of Algorithms & Computational Technology |
journalStr |
Journal of Algorithms & Computational Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Adrian Sandu Emil Constantinescu Gregory R. Carmichael Tianfeng Chai Dacian Daescu John H. Seinfeld |
container_volume |
5 |
class |
T57-57.97 QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Adrian Sandu |
doi_str_mv |
10.1260/1748-3018.5.4.667 |
author2-role |
verfasserin |
title_sort |
ensemble methods for dynamic data assimilation of chemical observations in atmospheric models |
callnumber |
T57-57.97 |
title_auth |
Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models |
abstract |
The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. |
abstractGer |
The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. |
abstract_unstemmed |
The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2034 GBV_ILN_2057 GBV_ILN_2068 GBV_ILN_2098 GBV_ILN_2706 GBV_ILN_2707 GBV_ILN_2890 GBV_ILN_2954 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models |
url |
https://doi.org/10.1260/1748-3018.5.4.667 https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b https://doaj.org/toc/1748-3018 https://doaj.org/toc/1748-3026 |
remote_bool |
true |
author2 |
Emil Constantinescu Gregory R. Carmichael Tianfeng Chai Dacian Daescu John H. Seinfeld |
author2Str |
Emil Constantinescu Gregory R. Carmichael Tianfeng Chai Dacian Daescu John H. Seinfeld |
ppnlink |
591513978 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1260/1748-3018.5.4.667 |
callnumber-a |
T57-57.97 |
up_date |
2024-07-03T18:10:34.731Z |
_version_ |
1803582423425875968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ045990697</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501200516.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1260/1748-3018.5.4.667</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ045990697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ102c3c7785fc492c80d4ffd0462ba47b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Adrian Sandu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects of nonlinear ensemble Kalman data assimilation applied to atmospheric chemical transport models. We highlight the challenges encountered in this approach such as filter divergence and spurious corrections, and propose solutions to overcome them, such as background covariance inflation and filter localization. The predictability is further improved by including model parameters in the assimilation process. Results for a large scale simulation of air pollution in North-East United States illustrate the potential of nonlinear ensemble techniques to assimilate chemical observations.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emil Constantinescu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory R. Carmichael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianfeng Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dacian Daescu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John H. Seinfeld</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Algorithms & Computational Technology</subfield><subfield code="d">SAGE Publishing, 2017</subfield><subfield code="g">5(2011)</subfield><subfield code="w">(DE-627)591513978</subfield><subfield code="w">(DE-600)2478205-1</subfield><subfield code="x">17483026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2011</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1260/1748-3018.5.4.667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/102c3c7785fc492c80d4ffd0462ba47b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1260/1748-3018.5.4.667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-3018</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-3026</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2707</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2890</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2954</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2011</subfield></datafield></record></collection>
|
score |
7.398945 |