Effects of Manganese Porphyrins on Cellular Sulfur Metabolism
Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately p...
Ausführliche Beschreibung
Autor*in: |
Kenneth R. Olson [verfasserIn] Yan Gao [verfasserIn] Andrea K. Steiger [verfasserIn] Michael D. Pluth [verfasserIn] Charles R. Tessier [verfasserIn] Troy A. Markel [verfasserIn] David Boone [verfasserIn] Robert V. Stahelin [verfasserIn] Ines Batinic-Haberle [verfasserIn] Karl D. Straubg [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Molecules - MDPI AG, 2003, 25(2020), 4, p 980 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2020 ; number:4, p 980 |
Links: |
---|
DOI / URN: |
10.3390/molecules25040980 |
---|
Katalog-ID: |
DOAJ046029036 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046029036 | ||
003 | DE-627 | ||
005 | 20230308102044.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/molecules25040980 |2 doi | |
035 | |a (DE-627)DOAJ046029036 | ||
035 | |a (DE-599)DOAJ175883133928472f8a1e4bd315c8543f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Kenneth R. Olson |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of Manganese Porphyrins on Cellular Sulfur Metabolism |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. | ||
650 | 4 | |a reactive sulfide species | |
650 | 4 | |a ros | |
650 | 4 | |a antioxidants | |
650 | 4 | |a mn porphyrins | |
650 | 4 | |a sod mimetics | |
650 | 4 | |a h<sub<2</sub<s | |
650 | 4 | |a polysulfides | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Yan Gao |e verfasserin |4 aut | |
700 | 0 | |a Andrea K. Steiger |e verfasserin |4 aut | |
700 | 0 | |a Michael D. Pluth |e verfasserin |4 aut | |
700 | 0 | |a Charles R. Tessier |e verfasserin |4 aut | |
700 | 0 | |a Troy A. Markel |e verfasserin |4 aut | |
700 | 0 | |a David Boone |e verfasserin |4 aut | |
700 | 0 | |a Robert V. Stahelin |e verfasserin |4 aut | |
700 | 0 | |a Ines Batinic-Haberle |e verfasserin |4 aut | |
700 | 0 | |a Karl D. Straubg |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Molecules |d MDPI AG, 2003 |g 25(2020), 4, p 980 |w (DE-627)311313132 |w (DE-600)2008644-1 |x 14203049 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2020 |g number:4, p 980 |
856 | 4 | 0 | |u https://doi.org/10.3390/molecules25040980 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/175883133928472f8a1e4bd315c8543f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1420-3049/25/4/980 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1420-3049 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2020 |e 4, p 980 |
author_variant |
k r o kro y g yg a k s aks m d p mdp c r t crt t a m tam d b db r v s rvs i b h ibh k d s kds |
---|---|
matchkey_str |
article:14203049:2020----::fetomnaeeopyisnellr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QD |
publishDate |
2020 |
allfields |
10.3390/molecules25040980 doi (DE-627)DOAJ046029036 (DE-599)DOAJ175883133928472f8a1e4bd315c8543f DE-627 ger DE-627 rakwb eng QD241-441 Kenneth R. Olson verfasserin aut Effects of Manganese Porphyrins on Cellular Sulfur Metabolism 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. reactive sulfide species ros antioxidants mn porphyrins sod mimetics h<sub<2</sub<s polysulfides Organic chemistry Yan Gao verfasserin aut Andrea K. Steiger verfasserin aut Michael D. Pluth verfasserin aut Charles R. Tessier verfasserin aut Troy A. Markel verfasserin aut David Boone verfasserin aut Robert V. Stahelin verfasserin aut Ines Batinic-Haberle verfasserin aut Karl D. Straubg verfasserin aut In Molecules MDPI AG, 2003 25(2020), 4, p 980 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:4, p 980 https://doi.org/10.3390/molecules25040980 kostenfrei https://doaj.org/article/175883133928472f8a1e4bd315c8543f kostenfrei https://www.mdpi.com/1420-3049/25/4/980 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 4, p 980 |
spelling |
10.3390/molecules25040980 doi (DE-627)DOAJ046029036 (DE-599)DOAJ175883133928472f8a1e4bd315c8543f DE-627 ger DE-627 rakwb eng QD241-441 Kenneth R. Olson verfasserin aut Effects of Manganese Porphyrins on Cellular Sulfur Metabolism 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. reactive sulfide species ros antioxidants mn porphyrins sod mimetics h<sub<2</sub<s polysulfides Organic chemistry Yan Gao verfasserin aut Andrea K. Steiger verfasserin aut Michael D. Pluth verfasserin aut Charles R. Tessier verfasserin aut Troy A. Markel verfasserin aut David Boone verfasserin aut Robert V. Stahelin verfasserin aut Ines Batinic-Haberle verfasserin aut Karl D. Straubg verfasserin aut In Molecules MDPI AG, 2003 25(2020), 4, p 980 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:4, p 980 https://doi.org/10.3390/molecules25040980 kostenfrei https://doaj.org/article/175883133928472f8a1e4bd315c8543f kostenfrei https://www.mdpi.com/1420-3049/25/4/980 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 4, p 980 |
allfields_unstemmed |
10.3390/molecules25040980 doi (DE-627)DOAJ046029036 (DE-599)DOAJ175883133928472f8a1e4bd315c8543f DE-627 ger DE-627 rakwb eng QD241-441 Kenneth R. Olson verfasserin aut Effects of Manganese Porphyrins on Cellular Sulfur Metabolism 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. reactive sulfide species ros antioxidants mn porphyrins sod mimetics h<sub<2</sub<s polysulfides Organic chemistry Yan Gao verfasserin aut Andrea K. Steiger verfasserin aut Michael D. Pluth verfasserin aut Charles R. Tessier verfasserin aut Troy A. Markel verfasserin aut David Boone verfasserin aut Robert V. Stahelin verfasserin aut Ines Batinic-Haberle verfasserin aut Karl D. Straubg verfasserin aut In Molecules MDPI AG, 2003 25(2020), 4, p 980 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:4, p 980 https://doi.org/10.3390/molecules25040980 kostenfrei https://doaj.org/article/175883133928472f8a1e4bd315c8543f kostenfrei https://www.mdpi.com/1420-3049/25/4/980 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 4, p 980 |
allfieldsGer |
10.3390/molecules25040980 doi (DE-627)DOAJ046029036 (DE-599)DOAJ175883133928472f8a1e4bd315c8543f DE-627 ger DE-627 rakwb eng QD241-441 Kenneth R. Olson verfasserin aut Effects of Manganese Porphyrins on Cellular Sulfur Metabolism 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. reactive sulfide species ros antioxidants mn porphyrins sod mimetics h<sub<2</sub<s polysulfides Organic chemistry Yan Gao verfasserin aut Andrea K. Steiger verfasserin aut Michael D. Pluth verfasserin aut Charles R. Tessier verfasserin aut Troy A. Markel verfasserin aut David Boone verfasserin aut Robert V. Stahelin verfasserin aut Ines Batinic-Haberle verfasserin aut Karl D. Straubg verfasserin aut In Molecules MDPI AG, 2003 25(2020), 4, p 980 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:4, p 980 https://doi.org/10.3390/molecules25040980 kostenfrei https://doaj.org/article/175883133928472f8a1e4bd315c8543f kostenfrei https://www.mdpi.com/1420-3049/25/4/980 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 4, p 980 |
allfieldsSound |
10.3390/molecules25040980 doi (DE-627)DOAJ046029036 (DE-599)DOAJ175883133928472f8a1e4bd315c8543f DE-627 ger DE-627 rakwb eng QD241-441 Kenneth R. Olson verfasserin aut Effects of Manganese Porphyrins on Cellular Sulfur Metabolism 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. reactive sulfide species ros antioxidants mn porphyrins sod mimetics h<sub<2</sub<s polysulfides Organic chemistry Yan Gao verfasserin aut Andrea K. Steiger verfasserin aut Michael D. Pluth verfasserin aut Charles R. Tessier verfasserin aut Troy A. Markel verfasserin aut David Boone verfasserin aut Robert V. Stahelin verfasserin aut Ines Batinic-Haberle verfasserin aut Karl D. Straubg verfasserin aut In Molecules MDPI AG, 2003 25(2020), 4, p 980 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:25 year:2020 number:4, p 980 https://doi.org/10.3390/molecules25040980 kostenfrei https://doaj.org/article/175883133928472f8a1e4bd315c8543f kostenfrei https://www.mdpi.com/1420-3049/25/4/980 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 4, p 980 |
language |
English |
source |
In Molecules 25(2020), 4, p 980 volume:25 year:2020 number:4, p 980 |
sourceStr |
In Molecules 25(2020), 4, p 980 volume:25 year:2020 number:4, p 980 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
reactive sulfide species ros antioxidants mn porphyrins sod mimetics h<sub<2</sub<s polysulfides Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Molecules |
authorswithroles_txt_mv |
Kenneth R. Olson @@aut@@ Yan Gao @@aut@@ Andrea K. Steiger @@aut@@ Michael D. Pluth @@aut@@ Charles R. Tessier @@aut@@ Troy A. Markel @@aut@@ David Boone @@aut@@ Robert V. Stahelin @@aut@@ Ines Batinic-Haberle @@aut@@ Karl D. Straubg @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
311313132 |
id |
DOAJ046029036 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046029036</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308102044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules25040980</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046029036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ175883133928472f8a1e4bd315c8543f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kenneth R. Olson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Manganese Porphyrins on Cellular Sulfur Metabolism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive sulfide species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ros</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antioxidants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mn porphyrins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sod mimetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">h<sub<2</sub<s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polysulfides</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea K. Steiger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael D. Pluth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles R. Tessier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Troy A. Markel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Boone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert V. Stahelin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ines Batinic-Haberle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karl D. Straubg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2020), 4, p 980</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4, p 980</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules25040980</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/175883133928472f8a1e4bd315c8543f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/25/4/980</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">4, p 980</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Kenneth R. Olson |
spellingShingle |
Kenneth R. Olson misc QD241-441 misc reactive sulfide species misc ros misc antioxidants misc mn porphyrins misc sod mimetics misc h<sub<2</sub<s misc polysulfides misc Organic chemistry Effects of Manganese Porphyrins on Cellular Sulfur Metabolism |
authorStr |
Kenneth R. Olson |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)311313132 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
14203049 |
topic_title |
QD241-441 Effects of Manganese Porphyrins on Cellular Sulfur Metabolism reactive sulfide species ros antioxidants mn porphyrins sod mimetics h<sub<2</sub<s polysulfides |
topic |
misc QD241-441 misc reactive sulfide species misc ros misc antioxidants misc mn porphyrins misc sod mimetics misc h<sub<2</sub<s misc polysulfides misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc reactive sulfide species misc ros misc antioxidants misc mn porphyrins misc sod mimetics misc h<sub<2</sub<s misc polysulfides misc Organic chemistry |
topic_browse |
misc QD241-441 misc reactive sulfide species misc ros misc antioxidants misc mn porphyrins misc sod mimetics misc h<sub<2</sub<s misc polysulfides misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecules |
hierarchy_parent_id |
311313132 |
hierarchy_top_title |
Molecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)311313132 (DE-600)2008644-1 |
title |
Effects of Manganese Porphyrins on Cellular Sulfur Metabolism |
ctrlnum |
(DE-627)DOAJ046029036 (DE-599)DOAJ175883133928472f8a1e4bd315c8543f |
title_full |
Effects of Manganese Porphyrins on Cellular Sulfur Metabolism |
author_sort |
Kenneth R. Olson |
journal |
Molecules |
journalStr |
Molecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Kenneth R. Olson Yan Gao Andrea K. Steiger Michael D. Pluth Charles R. Tessier Troy A. Markel David Boone Robert V. Stahelin Ines Batinic-Haberle Karl D. Straubg |
container_volume |
25 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Kenneth R. Olson |
doi_str_mv |
10.3390/molecules25040980 |
author2-role |
verfasserin |
title_sort |
effects of manganese porphyrins on cellular sulfur metabolism |
callnumber |
QD241-441 |
title_auth |
Effects of Manganese Porphyrins on Cellular Sulfur Metabolism |
abstract |
Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. |
abstractGer |
Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. |
abstract_unstemmed |
Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 980 |
title_short |
Effects of Manganese Porphyrins on Cellular Sulfur Metabolism |
url |
https://doi.org/10.3390/molecules25040980 https://doaj.org/article/175883133928472f8a1e4bd315c8543f https://www.mdpi.com/1420-3049/25/4/980 https://doaj.org/toc/1420-3049 |
remote_bool |
true |
author2 |
Yan Gao Andrea K. Steiger Michael D. Pluth Charles R. Tessier Troy A. Markel David Boone Robert V. Stahelin Ines Batinic-Haberle Karl D. Straubg |
author2Str |
Yan Gao Andrea K. Steiger Michael D. Pluth Charles R. Tessier Troy A. Markel David Boone Robert V. Stahelin Ines Batinic-Haberle Karl D. Straubg |
ppnlink |
311313132 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/molecules25040980 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T18:23:19.004Z |
_version_ |
1803583224811618304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046029036</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308102044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules25040980</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046029036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ175883133928472f8a1e4bd315c8543f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kenneth R. Olson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Manganese Porphyrins on Cellular Sulfur Metabolism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Manganese porphyrins (MnPs), MnTE-2-PyP<sup<5+</sup<, MnTnHex-2-PyP<sup<5+</sup< and MnTnBuOE-2-PyP<sup<5+</sup<, are superoxide dismutase (SOD) mimetics and form a redox cycle between O<sub<2</sub< and reductants, including ascorbic acid, ultimately producing hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<). We previously found that MnPs oxidize hydrogen sulfide (H<sub<2</sub<S) to polysulfides (PS; H<sub<2</sub<S<sub<n</sub<, n = 2−6) in buffer. Here, we examine the effects of MnPs for 24 h on H<sub<2</sub<S metabolism and PS production in HEK293, A549, HT29 and bone marrow derived stem cells (BMDSC) using H<sub<2</sub<S (AzMC, MeRho-AZ) and PS (SSP4) fluorophores. All MnPs decreased intracellular H<sub<2</sub<S production and increased intracellular PS. H<sub<2</sub<S metabolism and PS production were unaffected by cellular O<sub<2</sub< (5% versus 21% O<sub<2</sub<), H<sub<2</sub<O<sub<2</sub< or ascorbic acid. We observed with confocal microscopy that mitochondria are a major site of H<sub<2</sub<S production in HEK293 cells and that MnPs decrease mitochondrial H<sub<2</sub<S production and increase PS in what appeared to be nucleoli and cytosolic fibrillary elements. This supports a role for MnPs in the metabolism of H<sub<2</sub<S to PS, the latter serving as both short- and long-term antioxidants, and suggests that some of the biological effects of MnPs may be attributable to sulfur metabolism.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reactive sulfide species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ros</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antioxidants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mn porphyrins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sod mimetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">h<sub<2</sub<s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polysulfides</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea K. Steiger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael D. Pluth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles R. Tessier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Troy A. Markel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Boone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert V. Stahelin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ines Batinic-Haberle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karl D. Straubg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2020), 4, p 980</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4, p 980</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules25040980</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/175883133928472f8a1e4bd315c8543f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/25/4/980</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">4, p 980</subfield></datafield></record></collection>
|
score |
7.403063 |