A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery
This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay meth...
Ausführliche Beschreibung
Autor*in: |
Hazem Usama Abdelhady [verfasserIn] Cary David Troy [verfasserIn] Ayman Habib [verfasserIn] Raja Manish [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 14(2022), 3, p 557 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:3, p 557 |
Links: |
---|
DOI / URN: |
10.3390/rs14030557 |
---|
Katalog-ID: |
DOAJ046054634 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046054634 | ||
003 | DE-627 | ||
005 | 20240414193743.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs14030557 |2 doi | |
035 | |a (DE-627)DOAJ046054634 | ||
035 | |a (DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Hazem Usama Abdelhady |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. | ||
650 | 4 | |a shoreline detection | |
650 | 4 | |a shoreline evolution | |
650 | 4 | |a shoreline timeseries | |
650 | 4 | |a water index | |
650 | 4 | |a LiDAR | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Cary David Troy |e verfasserin |4 aut | |
700 | 0 | |a Ayman Habib |e verfasserin |4 aut | |
700 | 0 | |a Raja Manish |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 14(2022), 3, p 557 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:3, p 557 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs14030557 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/14/3/557 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 3, p 557 |
author_variant |
h u a hua c d t cdt a h ah r m rm |
---|---|
matchkey_str |
article:20724292:2022----::smlflyuoaesoeieeetoagrtmohgrslt |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/rs14030557 doi (DE-627)DOAJ046054634 (DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db DE-627 ger DE-627 rakwb eng Hazem Usama Abdelhady verfasserin aut A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. shoreline detection shoreline evolution shoreline timeseries water index LiDAR Science Q Cary David Troy verfasserin aut Ayman Habib verfasserin aut Raja Manish verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 3, p 557 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:3, p 557 https://doi.org/10.3390/rs14030557 kostenfrei https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db kostenfrei https://www.mdpi.com/2072-4292/14/3/557 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 3, p 557 |
spelling |
10.3390/rs14030557 doi (DE-627)DOAJ046054634 (DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db DE-627 ger DE-627 rakwb eng Hazem Usama Abdelhady verfasserin aut A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. shoreline detection shoreline evolution shoreline timeseries water index LiDAR Science Q Cary David Troy verfasserin aut Ayman Habib verfasserin aut Raja Manish verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 3, p 557 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:3, p 557 https://doi.org/10.3390/rs14030557 kostenfrei https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db kostenfrei https://www.mdpi.com/2072-4292/14/3/557 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 3, p 557 |
allfields_unstemmed |
10.3390/rs14030557 doi (DE-627)DOAJ046054634 (DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db DE-627 ger DE-627 rakwb eng Hazem Usama Abdelhady verfasserin aut A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. shoreline detection shoreline evolution shoreline timeseries water index LiDAR Science Q Cary David Troy verfasserin aut Ayman Habib verfasserin aut Raja Manish verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 3, p 557 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:3, p 557 https://doi.org/10.3390/rs14030557 kostenfrei https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db kostenfrei https://www.mdpi.com/2072-4292/14/3/557 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 3, p 557 |
allfieldsGer |
10.3390/rs14030557 doi (DE-627)DOAJ046054634 (DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db DE-627 ger DE-627 rakwb eng Hazem Usama Abdelhady verfasserin aut A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. shoreline detection shoreline evolution shoreline timeseries water index LiDAR Science Q Cary David Troy verfasserin aut Ayman Habib verfasserin aut Raja Manish verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 3, p 557 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:3, p 557 https://doi.org/10.3390/rs14030557 kostenfrei https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db kostenfrei https://www.mdpi.com/2072-4292/14/3/557 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 3, p 557 |
allfieldsSound |
10.3390/rs14030557 doi (DE-627)DOAJ046054634 (DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db DE-627 ger DE-627 rakwb eng Hazem Usama Abdelhady verfasserin aut A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. shoreline detection shoreline evolution shoreline timeseries water index LiDAR Science Q Cary David Troy verfasserin aut Ayman Habib verfasserin aut Raja Manish verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 3, p 557 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:3, p 557 https://doi.org/10.3390/rs14030557 kostenfrei https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db kostenfrei https://www.mdpi.com/2072-4292/14/3/557 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 3, p 557 |
language |
English |
source |
In Remote Sensing 14(2022), 3, p 557 volume:14 year:2022 number:3, p 557 |
sourceStr |
In Remote Sensing 14(2022), 3, p 557 volume:14 year:2022 number:3, p 557 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
shoreline detection shoreline evolution shoreline timeseries water index LiDAR Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Hazem Usama Abdelhady @@aut@@ Cary David Troy @@aut@@ Ayman Habib @@aut@@ Raja Manish @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ046054634 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046054634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414193743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14030557</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046054634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hazem Usama Abdelhady</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shoreline detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shoreline evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shoreline timeseries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LiDAR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cary David Troy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayman Habib</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raja Manish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 3, p 557</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 557</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14030557</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/3/557</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 557</subfield></datafield></record></collection>
|
author |
Hazem Usama Abdelhady |
spellingShingle |
Hazem Usama Abdelhady misc shoreline detection misc shoreline evolution misc shoreline timeseries misc water index misc LiDAR misc Science misc Q A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery |
authorStr |
Hazem Usama Abdelhady |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery shoreline detection shoreline evolution shoreline timeseries water index LiDAR |
topic |
misc shoreline detection misc shoreline evolution misc shoreline timeseries misc water index misc LiDAR misc Science misc Q |
topic_unstemmed |
misc shoreline detection misc shoreline evolution misc shoreline timeseries misc water index misc LiDAR misc Science misc Q |
topic_browse |
misc shoreline detection misc shoreline evolution misc shoreline timeseries misc water index misc LiDAR misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery |
ctrlnum |
(DE-627)DOAJ046054634 (DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db |
title_full |
A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery |
author_sort |
Hazem Usama Abdelhady |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Hazem Usama Abdelhady Cary David Troy Ayman Habib Raja Manish |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Hazem Usama Abdelhady |
doi_str_mv |
10.3390/rs14030557 |
author2-role |
verfasserin |
title_sort |
simple, fully automated shoreline detection algorithm for high-resolution multi-spectral imagery |
title_auth |
A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery |
abstract |
This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. |
abstractGer |
This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. |
abstract_unstemmed |
This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
3, p 557 |
title_short |
A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery |
url |
https://doi.org/10.3390/rs14030557 https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db https://www.mdpi.com/2072-4292/14/3/557 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Cary David Troy Ayman Habib Raja Manish |
author2Str |
Cary David Troy Ayman Habib Raja Manish |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs14030557 |
up_date |
2024-07-03T18:31:45.213Z |
_version_ |
1803583755617566720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046054634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414193743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14030557</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046054634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9ecc9fdad9e34d93948835870c1896db</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hazem Usama Abdelhady</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Simple, Fully Automated Shoreline Detection Algorithm for High-Resolution Multi-Spectral Imagery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops and validates a new fully automated procedure for shoreline delineation from high-resolution multispectral satellite images. The model is based on a new water–land index, the Direct Difference Water Index (<i<DDWI</i<). A new technique based on the buffer overlay method is also presented to determine the shoreline changes from different satellite images and obtain a time series for the shoreline changes. The shoreline detection model was applied to imagery from multiple satellites and validated to have sub-pixel accuracy using beach survey data that were collected from the Lake Michigan (USA) shoreline using a novel backpack-based LiDAR system. The model was also applied to 132 satellite images of a Lake Michigan beach over a three-year period and detected the shoreline accurately, with a <99% success rate. The model out-performed other existing shoreline detection algorithms based on different water indices and clustering techniques. The resolution shoreline position timeseries is the first satellite image-extracted dataset of its kind in terms of its high spatial and temporal resolution, and paves the road to obtaining other high-temporal-resolution datasets to refine models of beaches worldwide.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shoreline detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shoreline evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shoreline timeseries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LiDAR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cary David Troy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ayman Habib</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raja Manish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 3, p 557</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 557</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14030557</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9ecc9fdad9e34d93948835870c1896db</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/3/557</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 557</subfield></datafield></record></collection>
|
score |
7.401187 |