Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx
The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation windo...
Ausführliche Beschreibung
Autor*in: |
Naomi N. González Hernández [verfasserIn] José Luis Contreras [verfasserIn] Marcos Pinto [verfasserIn] Beatriz Zeifert [verfasserIn] Jorge L. Flores Moreno [verfasserIn] Gustavo A. Fuentes [verfasserIn] María E. Hernández-Terán [verfasserIn] Tamara Vázquez [verfasserIn] José Salmones [verfasserIn] José M. Jurado [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Catalysts - MDPI AG, 2012, 10(2020), 10, p 1212 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:10, p 1212 |
Links: |
---|
DOI / URN: |
10.3390/catal10101212 |
---|
Katalog-ID: |
DOAJ046305785 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046305785 | ||
003 | DE-627 | ||
005 | 20240412211934.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/catal10101212 |2 doi | |
035 | |a (DE-627)DOAJ046305785 | ||
035 | |a (DE-599)DOAJdbaa2538154740e0b9d790dad5766602 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Naomi N. González Hernández |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). | ||
650 | 4 | |a H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO | |
650 | 4 | |a PtAg/Al<sub<2</sub<O<sub<3</sub< | |
650 | 4 | |a bimetallic clusters | |
650 | 4 | |a Al<sub<2</sub<O<sub<3</sub<–WOx | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a José Luis Contreras |e verfasserin |4 aut | |
700 | 0 | |a Marcos Pinto |e verfasserin |4 aut | |
700 | 0 | |a Beatriz Zeifert |e verfasserin |4 aut | |
700 | 0 | |a Jorge L. Flores Moreno |e verfasserin |4 aut | |
700 | 0 | |a Gustavo A. Fuentes |e verfasserin |4 aut | |
700 | 0 | |a María E. Hernández-Terán |e verfasserin |4 aut | |
700 | 0 | |a Tamara Vázquez |e verfasserin |4 aut | |
700 | 0 | |a José Salmones |e verfasserin |4 aut | |
700 | 0 | |a José M. Jurado |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Catalysts |d MDPI AG, 2012 |g 10(2020), 10, p 1212 |w (DE-627)71862646X |w (DE-600)2662126-5 |x 20734344 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:10, p 1212 |
856 | 4 | 0 | |u https://doi.org/10.3390/catal10101212 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dbaa2538154740e0b9d790dad5766602 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4344/10/10/1212 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4344 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 10, p 1212 |
author_variant |
n n g h nngh j l c jlc m p mp b z bz j l f m jlfm g a f gaf m e h t meht t v tv j s js j m j jmj |
---|---|
matchkey_str |
article:20734344:2020----::mrvdordcinsncu3uhu8uadsbsbihglu2uou3uct |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/catal10101212 doi (DE-627)DOAJ046305785 (DE-599)DOAJdbaa2538154740e0b9d790dad5766602 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Naomi N. González Hernández verfasserin aut Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO PtAg/Al<sub<2</sub<O<sub<3</sub< bimetallic clusters Al<sub<2</sub<O<sub<3</sub<–WOx Chemical technology Chemistry José Luis Contreras verfasserin aut Marcos Pinto verfasserin aut Beatriz Zeifert verfasserin aut Jorge L. Flores Moreno verfasserin aut Gustavo A. Fuentes verfasserin aut María E. Hernández-Terán verfasserin aut Tamara Vázquez verfasserin aut José Salmones verfasserin aut José M. Jurado verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 10, p 1212 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:10, p 1212 https://doi.org/10.3390/catal10101212 kostenfrei https://doaj.org/article/dbaa2538154740e0b9d790dad5766602 kostenfrei https://www.mdpi.com/2073-4344/10/10/1212 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1212 |
spelling |
10.3390/catal10101212 doi (DE-627)DOAJ046305785 (DE-599)DOAJdbaa2538154740e0b9d790dad5766602 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Naomi N. González Hernández verfasserin aut Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO PtAg/Al<sub<2</sub<O<sub<3</sub< bimetallic clusters Al<sub<2</sub<O<sub<3</sub<–WOx Chemical technology Chemistry José Luis Contreras verfasserin aut Marcos Pinto verfasserin aut Beatriz Zeifert verfasserin aut Jorge L. Flores Moreno verfasserin aut Gustavo A. Fuentes verfasserin aut María E. Hernández-Terán verfasserin aut Tamara Vázquez verfasserin aut José Salmones verfasserin aut José M. Jurado verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 10, p 1212 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:10, p 1212 https://doi.org/10.3390/catal10101212 kostenfrei https://doaj.org/article/dbaa2538154740e0b9d790dad5766602 kostenfrei https://www.mdpi.com/2073-4344/10/10/1212 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1212 |
allfields_unstemmed |
10.3390/catal10101212 doi (DE-627)DOAJ046305785 (DE-599)DOAJdbaa2538154740e0b9d790dad5766602 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Naomi N. González Hernández verfasserin aut Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO PtAg/Al<sub<2</sub<O<sub<3</sub< bimetallic clusters Al<sub<2</sub<O<sub<3</sub<–WOx Chemical technology Chemistry José Luis Contreras verfasserin aut Marcos Pinto verfasserin aut Beatriz Zeifert verfasserin aut Jorge L. Flores Moreno verfasserin aut Gustavo A. Fuentes verfasserin aut María E. Hernández-Terán verfasserin aut Tamara Vázquez verfasserin aut José Salmones verfasserin aut José M. Jurado verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 10, p 1212 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:10, p 1212 https://doi.org/10.3390/catal10101212 kostenfrei https://doaj.org/article/dbaa2538154740e0b9d790dad5766602 kostenfrei https://www.mdpi.com/2073-4344/10/10/1212 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1212 |
allfieldsGer |
10.3390/catal10101212 doi (DE-627)DOAJ046305785 (DE-599)DOAJdbaa2538154740e0b9d790dad5766602 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Naomi N. González Hernández verfasserin aut Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO PtAg/Al<sub<2</sub<O<sub<3</sub< bimetallic clusters Al<sub<2</sub<O<sub<3</sub<–WOx Chemical technology Chemistry José Luis Contreras verfasserin aut Marcos Pinto verfasserin aut Beatriz Zeifert verfasserin aut Jorge L. Flores Moreno verfasserin aut Gustavo A. Fuentes verfasserin aut María E. Hernández-Terán verfasserin aut Tamara Vázquez verfasserin aut José Salmones verfasserin aut José M. Jurado verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 10, p 1212 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:10, p 1212 https://doi.org/10.3390/catal10101212 kostenfrei https://doaj.org/article/dbaa2538154740e0b9d790dad5766602 kostenfrei https://www.mdpi.com/2073-4344/10/10/1212 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1212 |
allfieldsSound |
10.3390/catal10101212 doi (DE-627)DOAJ046305785 (DE-599)DOAJdbaa2538154740e0b9d790dad5766602 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Naomi N. González Hernández verfasserin aut Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO PtAg/Al<sub<2</sub<O<sub<3</sub< bimetallic clusters Al<sub<2</sub<O<sub<3</sub<–WOx Chemical technology Chemistry José Luis Contreras verfasserin aut Marcos Pinto verfasserin aut Beatriz Zeifert verfasserin aut Jorge L. Flores Moreno verfasserin aut Gustavo A. Fuentes verfasserin aut María E. Hernández-Terán verfasserin aut Tamara Vázquez verfasserin aut José Salmones verfasserin aut José M. Jurado verfasserin aut In Catalysts MDPI AG, 2012 10(2020), 10, p 1212 (DE-627)71862646X (DE-600)2662126-5 20734344 nnns volume:10 year:2020 number:10, p 1212 https://doi.org/10.3390/catal10101212 kostenfrei https://doaj.org/article/dbaa2538154740e0b9d790dad5766602 kostenfrei https://www.mdpi.com/2073-4344/10/10/1212 kostenfrei https://doaj.org/toc/2073-4344 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1212 |
language |
English |
source |
In Catalysts 10(2020), 10, p 1212 volume:10 year:2020 number:10, p 1212 |
sourceStr |
In Catalysts 10(2020), 10, p 1212 volume:10 year:2020 number:10, p 1212 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO PtAg/Al<sub<2</sub<O<sub<3</sub< bimetallic clusters Al<sub<2</sub<O<sub<3</sub<–WOx Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Catalysts |
authorswithroles_txt_mv |
Naomi N. González Hernández @@aut@@ José Luis Contreras @@aut@@ Marcos Pinto @@aut@@ Beatriz Zeifert @@aut@@ Jorge L. Flores Moreno @@aut@@ Gustavo A. Fuentes @@aut@@ María E. Hernández-Terán @@aut@@ Tamara Vázquez @@aut@@ José Salmones @@aut@@ José M. Jurado @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
71862646X |
id |
DOAJ046305785 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046305785</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/catal10101212</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046305785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdbaa2538154740e0b9d790dad5766602</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Naomi N. González Hernández</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PtAg/Al<sub<2</sub<O<sub<3</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bimetallic clusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Al<sub<2</sub<O<sub<3</sub<–WOx</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Luis Contreras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcos Pinto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beatriz Zeifert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jorge L. Flores Moreno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gustavo A. Fuentes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María E. Hernández-Terán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tamara Vázquez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Salmones</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José M. Jurado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Catalysts</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 10, p 1212</subfield><subfield code="w">(DE-627)71862646X</subfield><subfield code="w">(DE-600)2662126-5</subfield><subfield code="x">20734344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1212</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/catal10101212</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dbaa2538154740e0b9d790dad5766602</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4344/10/10/1212</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4344</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1212</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Naomi N. González Hernández |
spellingShingle |
Naomi N. González Hernández misc TP1-1185 misc QD1-999 misc H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO misc PtAg/Al<sub<2</sub<O<sub<3</sub< misc bimetallic clusters misc Al<sub<2</sub<O<sub<3</sub<–WOx misc Chemical technology misc Chemistry Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx |
authorStr |
Naomi N. González Hernández |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)71862646X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
20734344 |
topic_title |
TP1-1185 QD1-999 Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO PtAg/Al<sub<2</sub<O<sub<3</sub< bimetallic clusters Al<sub<2</sub<O<sub<3</sub<–WOx |
topic |
misc TP1-1185 misc QD1-999 misc H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO misc PtAg/Al<sub<2</sub<O<sub<3</sub< misc bimetallic clusters misc Al<sub<2</sub<O<sub<3</sub<–WOx misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO misc PtAg/Al<sub<2</sub<O<sub<3</sub< misc bimetallic clusters misc Al<sub<2</sub<O<sub<3</sub<–WOx misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO misc PtAg/Al<sub<2</sub<O<sub<3</sub< misc bimetallic clusters misc Al<sub<2</sub<O<sub<3</sub<–WOx misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Catalysts |
hierarchy_parent_id |
71862646X |
hierarchy_top_title |
Catalysts |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)71862646X (DE-600)2662126-5 |
title |
Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx |
ctrlnum |
(DE-627)DOAJ046305785 (DE-599)DOAJdbaa2538154740e0b9d790dad5766602 |
title_full |
Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx |
author_sort |
Naomi N. González Hernández |
journal |
Catalysts |
journalStr |
Catalysts |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Naomi N. González Hernández José Luis Contreras Marcos Pinto Beatriz Zeifert Jorge L. Flores Moreno Gustavo A. Fuentes María E. Hernández-Terán Tamara Vázquez José Salmones José M. Jurado |
container_volume |
10 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Naomi N. González Hernández |
doi_str_mv |
10.3390/catal10101212 |
author2-role |
verfasserin |
title_sort |
improved nox reduction using c<sub<3</sub<h<sub<8</sub< and h<sub<2</sub< with ag/al<sub<2</sub<o<sub<3</sub< catalysts promoted with pt and wox |
callnumber |
TP1-1185 |
title_auth |
Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx |
abstract |
The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). |
abstractGer |
The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). |
abstract_unstemmed |
The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1212 |
title_short |
Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx |
url |
https://doi.org/10.3390/catal10101212 https://doaj.org/article/dbaa2538154740e0b9d790dad5766602 https://www.mdpi.com/2073-4344/10/10/1212 https://doaj.org/toc/2073-4344 |
remote_bool |
true |
author2 |
José Luis Contreras Marcos Pinto Beatriz Zeifert Jorge L. Flores Moreno Gustavo A. Fuentes María E. Hernández-Terán Tamara Vázquez José Salmones José M. Jurado |
author2Str |
José Luis Contreras Marcos Pinto Beatriz Zeifert Jorge L. Flores Moreno Gustavo A. Fuentes María E. Hernández-Terán Tamara Vázquez José Salmones José M. Jurado |
ppnlink |
71862646X |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/catal10101212 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T19:54:52.410Z |
_version_ |
1803588985068453888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046305785</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412211934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/catal10101212</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046305785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdbaa2538154740e0b9d790dad5766602</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Naomi N. González Hernández</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved NOx Reduction Using C<sub<3</sub<H<sub<8</sub< and H<sub<2</sub< with Ag/Al<sub<2</sub<O<sub<3</sub< Catalysts Promoted with Pt and WOx</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The addition of Pt (0.1 wt%Pt) to the 2 wt%Ag/Al<sub<2</sub<O<sub<3</sub<-WOx catalyst improved the C<sub<3</sub<H<sub<8</sub<– Selective Catalytic Reduction (SCR) of NO assisted by H<sub<2</sub< and widened the range of the operation window. During H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR of NO, the bimetallic Pt–Ag catalyst showed two maxima in conversion: 80% (at 130 °C) and 91% (between 260 and 350 °C). This PtAg bimetallic catalyst showed that it could combine the catalytic properties of Pt at low temperature, with the properties of Ag/Al<sub<2</sub<O<sub<3</sub< at high temperature. These PtAg catalysts were composed of Ag<sup<+</sup<, Ag<sub<n</sub<<sup<δ+</sup< clusters, and PtAg nanoparticles. The catalysts were characterized by Temperature Programmed Reduction (TPR), Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM)/ Energy Dispersed X-ray Spectroscopy (EDS), x-ray Diffraction (XRD) and N<sub<2</sub< physisorption. The PtAg bimetallic catalysts were able to chemisorb H<sub<2</sub<. The dispersion of Pt in the bimetallic catalysts was the largest for the catalyst with the lowest Pt/Ag atomic ratio. Through SEM, mainly spherical clusters smaller than 10 nm were observed in the PtAg catalyst. There were about 32% of particles with size equal or below 10 nm. The PtAg bimetallic catalysts produced NO<sub<2</sub< in the intermediate temperature range as well as some N<sub<2</sub<O. The yield to N<sub<2</sub<O was proportional to the Pt/Ag atomic ratio and reached 8.5% N<sub<2</sub<O. WOx stabilizes Al<sub<2</sub<O<sub<3</sub< at temperatures ≥650 °C, and also stabilizes Pt when it is reduced in H<sub<2</sub< at high temperature (800 °C).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<–C<sub<3</sub<H<sub<8</sub<–SCR–NO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PtAg/Al<sub<2</sub<O<sub<3</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bimetallic clusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Al<sub<2</sub<O<sub<3</sub<–WOx</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Luis Contreras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcos Pinto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beatriz Zeifert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jorge L. Flores Moreno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gustavo A. Fuentes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">María E. Hernández-Terán</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tamara Vázquez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Salmones</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José M. Jurado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Catalysts</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 10, p 1212</subfield><subfield code="w">(DE-627)71862646X</subfield><subfield code="w">(DE-600)2662126-5</subfield><subfield code="x">20734344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1212</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/catal10101212</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dbaa2538154740e0b9d790dad5766602</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4344/10/10/1212</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4344</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1212</subfield></datafield></record></collection>
|
score |
7.401636 |