Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study
Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and...
Ausführliche Beschreibung
Autor*in: |
Shaojie Chen [verfasserIn] Tianqi Jiang [verfasserIn] Huaiyuan Wang [verfasserIn] Fan Feng [verfasserIn] Dawei Yin [verfasserIn] Xiushan Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy Science & Engineering - Wiley, 2014, 7(2019), 6, Seite 3020-3037 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; number:6 ; pages:3020-3037 |
Links: |
---|
DOI / URN: |
10.1002/ese3.476 |
---|
Katalog-ID: |
DOAJ046459111 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046459111 | ||
003 | DE-627 | ||
005 | 20230502135801.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/ese3.476 |2 doi | |
035 | |a (DE-627)DOAJ046459111 | ||
035 | |a (DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Shaojie Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. | ||
650 | 4 | |a coal | |
650 | 4 | |a cyclic wetting‐drying | |
650 | 4 | |a mechanical strength characteristics | |
650 | 4 | |a microstructure parameters | |
650 | 4 | |a Pearson coefficient | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Tianqi Jiang |e verfasserin |4 aut | |
700 | 0 | |a Huaiyuan Wang |e verfasserin |4 aut | |
700 | 0 | |a Fan Feng |e verfasserin |4 aut | |
700 | 0 | |a Dawei Yin |e verfasserin |4 aut | |
700 | 0 | |a Xiushan Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Science & Engineering |d Wiley, 2014 |g 7(2019), 6, Seite 3020-3037 |w (DE-627)750089202 |w (DE-600)2720339-6 |x 20500505 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g number:6 |g pages:3020-3037 |
856 | 4 | 0 | |u https://doi.org/10.1002/ese3.476 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/ese3.476 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2050-0505 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |e 6 |h 3020-3037 |
author_variant |
s c sc t j tj h w hw f f ff d y dy x l xl |
---|---|
matchkey_str |
article:20500505:2019----::nlecocciwtigrignhmcaiasrntcaatrsisfol |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1002/ese3.476 doi (DE-627)DOAJ046459111 (DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46 DE-627 ger DE-627 rakwb eng Shaojie Chen verfasserin aut Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. coal cyclic wetting‐drying mechanical strength characteristics microstructure parameters Pearson coefficient Technology T Science Q Tianqi Jiang verfasserin aut Huaiyuan Wang verfasserin aut Fan Feng verfasserin aut Dawei Yin verfasserin aut Xiushan Li verfasserin aut In Energy Science & Engineering Wiley, 2014 7(2019), 6, Seite 3020-3037 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:7 year:2019 number:6 pages:3020-3037 https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46 kostenfrei https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 6 3020-3037 |
spelling |
10.1002/ese3.476 doi (DE-627)DOAJ046459111 (DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46 DE-627 ger DE-627 rakwb eng Shaojie Chen verfasserin aut Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. coal cyclic wetting‐drying mechanical strength characteristics microstructure parameters Pearson coefficient Technology T Science Q Tianqi Jiang verfasserin aut Huaiyuan Wang verfasserin aut Fan Feng verfasserin aut Dawei Yin verfasserin aut Xiushan Li verfasserin aut In Energy Science & Engineering Wiley, 2014 7(2019), 6, Seite 3020-3037 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:7 year:2019 number:6 pages:3020-3037 https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46 kostenfrei https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 6 3020-3037 |
allfields_unstemmed |
10.1002/ese3.476 doi (DE-627)DOAJ046459111 (DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46 DE-627 ger DE-627 rakwb eng Shaojie Chen verfasserin aut Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. coal cyclic wetting‐drying mechanical strength characteristics microstructure parameters Pearson coefficient Technology T Science Q Tianqi Jiang verfasserin aut Huaiyuan Wang verfasserin aut Fan Feng verfasserin aut Dawei Yin verfasserin aut Xiushan Li verfasserin aut In Energy Science & Engineering Wiley, 2014 7(2019), 6, Seite 3020-3037 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:7 year:2019 number:6 pages:3020-3037 https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46 kostenfrei https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 6 3020-3037 |
allfieldsGer |
10.1002/ese3.476 doi (DE-627)DOAJ046459111 (DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46 DE-627 ger DE-627 rakwb eng Shaojie Chen verfasserin aut Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. coal cyclic wetting‐drying mechanical strength characteristics microstructure parameters Pearson coefficient Technology T Science Q Tianqi Jiang verfasserin aut Huaiyuan Wang verfasserin aut Fan Feng verfasserin aut Dawei Yin verfasserin aut Xiushan Li verfasserin aut In Energy Science & Engineering Wiley, 2014 7(2019), 6, Seite 3020-3037 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:7 year:2019 number:6 pages:3020-3037 https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46 kostenfrei https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 6 3020-3037 |
allfieldsSound |
10.1002/ese3.476 doi (DE-627)DOAJ046459111 (DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46 DE-627 ger DE-627 rakwb eng Shaojie Chen verfasserin aut Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. coal cyclic wetting‐drying mechanical strength characteristics microstructure parameters Pearson coefficient Technology T Science Q Tianqi Jiang verfasserin aut Huaiyuan Wang verfasserin aut Fan Feng verfasserin aut Dawei Yin verfasserin aut Xiushan Li verfasserin aut In Energy Science & Engineering Wiley, 2014 7(2019), 6, Seite 3020-3037 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:7 year:2019 number:6 pages:3020-3037 https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46 kostenfrei https://doi.org/10.1002/ese3.476 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 6 3020-3037 |
language |
English |
source |
In Energy Science & Engineering 7(2019), 6, Seite 3020-3037 volume:7 year:2019 number:6 pages:3020-3037 |
sourceStr |
In Energy Science & Engineering 7(2019), 6, Seite 3020-3037 volume:7 year:2019 number:6 pages:3020-3037 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coal cyclic wetting‐drying mechanical strength characteristics microstructure parameters Pearson coefficient Technology T Science Q |
isfreeaccess_bool |
true |
container_title |
Energy Science & Engineering |
authorswithroles_txt_mv |
Shaojie Chen @@aut@@ Tianqi Jiang @@aut@@ Huaiyuan Wang @@aut@@ Fan Feng @@aut@@ Dawei Yin @@aut@@ Xiushan Li @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
750089202 |
id |
DOAJ046459111 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046459111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135801.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ese3.476</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046459111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shaojie Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclic wetting‐drying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical strength characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microstructure parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearson coefficient</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianqi Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaiyuan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiushan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Science & Engineering</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">7(2019), 6, Seite 3020-3037</subfield><subfield code="w">(DE-627)750089202</subfield><subfield code="w">(DE-600)2720339-6</subfield><subfield code="x">20500505</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:3020-3037</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-0505</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="h">3020-3037</subfield></datafield></record></collection>
|
author |
Shaojie Chen |
spellingShingle |
Shaojie Chen misc coal misc cyclic wetting‐drying misc mechanical strength characteristics misc microstructure parameters misc Pearson coefficient misc Technology misc T misc Science misc Q Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study |
authorStr |
Shaojie Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750089202 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20500505 |
topic_title |
Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study coal cyclic wetting‐drying mechanical strength characteristics microstructure parameters Pearson coefficient |
topic |
misc coal misc cyclic wetting‐drying misc mechanical strength characteristics misc microstructure parameters misc Pearson coefficient misc Technology misc T misc Science misc Q |
topic_unstemmed |
misc coal misc cyclic wetting‐drying misc mechanical strength characteristics misc microstructure parameters misc Pearson coefficient misc Technology misc T misc Science misc Q |
topic_browse |
misc coal misc cyclic wetting‐drying misc mechanical strength characteristics misc microstructure parameters misc Pearson coefficient misc Technology misc T misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Science & Engineering |
hierarchy_parent_id |
750089202 |
hierarchy_top_title |
Energy Science & Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750089202 (DE-600)2720339-6 |
title |
Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study |
ctrlnum |
(DE-627)DOAJ046459111 (DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46 |
title_full |
Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study |
author_sort |
Shaojie Chen |
journal |
Energy Science & Engineering |
journalStr |
Energy Science & Engineering |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
3020 |
author_browse |
Shaojie Chen Tianqi Jiang Huaiyuan Wang Fan Feng Dawei Yin Xiushan Li |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Shaojie Chen |
doi_str_mv |
10.1002/ese3.476 |
author2-role |
verfasserin |
title_sort |
influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: a laboratory‐scale study |
title_auth |
Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study |
abstract |
Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. |
abstractGer |
Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. |
abstract_unstemmed |
Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study |
url |
https://doi.org/10.1002/ese3.476 https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46 https://doaj.org/toc/2050-0505 |
remote_bool |
true |
author2 |
Tianqi Jiang Huaiyuan Wang Fan Feng Dawei Yin Xiushan Li |
author2Str |
Tianqi Jiang Huaiyuan Wang Fan Feng Dawei Yin Xiushan Li |
ppnlink |
750089202 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/ese3.476 |
up_date |
2024-07-03T20:47:03.046Z |
_version_ |
1803592267778228224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046459111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135801.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ese3.476</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046459111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ40f1fb3b11bb4b2faf0da94d4cc08a46</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shaojie Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of cyclic wetting‐drying on the mechanical strength characteristics of coal samples: A laboratory‐scale study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Water‐coal interactions have gained much recent attention, although few studies focus on the strength of coal under wetting‐drying cycles. This study investigates changes in the microstructure and mechanical strength of coal that are induced by water‐coal interactions, at the macroscale and microscale. Fourteen specimens after continuous wetting and fourteen specimens after wetting‐drying cycles were tested, indicating that peak stress and elastic modulus decrease with increasing continuous wetting time and number of wetting‐drying cycles, while peak strain increases. We analyzed changes in the coal microstructure using a scanning electron microscope (SEM) and the Image Pro Plus 6.0 (IPP 6.0) software. The regression model for cyclic wetting‐drying reveals that porosity and pore circularity are the main correlation indicators associated with uniaxial compressive strength. Therefore, different numbers of wetting‐drying cycles could induce different degrees of damage to coal, which increases progressively through gradual changes to its microstructure. These findings indicate that wetting‐drying cycles have a more significant impact on the stability of coal mass than continuous wetting. Our results are of use in determining the size of coal pillars, and expanding the knowledge base related to the mechanical properties of coal mass, water bursting, water recharge channels, and the stress‐crack‐permeability evolution law in mines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclic wetting‐drying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical strength characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microstructure parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearson coefficient</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianqi Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaiyuan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiushan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Science & Engineering</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">7(2019), 6, Seite 3020-3037</subfield><subfield code="w">(DE-627)750089202</subfield><subfield code="w">(DE-600)2720339-6</subfield><subfield code="x">20500505</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:3020-3037</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/40f1fb3b11bb4b2faf0da94d4cc08a46</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.476</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-0505</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="h">3020-3037</subfield></datafield></record></collection>
|
score |
7.399441 |