Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics
Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS)...
Ausführliche Beschreibung
Autor*in: |
Alice Verticchio Vercellin [verfasserIn] Alon Harris [verfasserIn] Aditya Belamkar [verfasserIn] Ryan Zukerman [verfasserIn] Lucia Carichino [verfasserIn] Marcela Szopos [verfasserIn] Brent Siesky [verfasserIn] Luciano Quaranta [verfasserIn] Carlo Bruttini [verfasserIn] Francesco Oddone [verfasserIn] Ivano Riva [verfasserIn] Giovanna Guidoboni [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Photonics - MDPI AG, 2014, 9(2022), 3, p 158 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:3, p 158 |
Links: |
---|
DOI / URN: |
10.3390/photonics9030158 |
---|
Katalog-ID: |
DOAJ046807268 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046807268 | ||
003 | DE-627 | ||
005 | 20240414134151.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/photonics9030158 |2 doi | |
035 | |a (DE-627)DOAJ046807268 | ||
035 | |a (DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1501-1820 | |
100 | 0 | |a Alice Verticchio Vercellin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. | ||
650 | 4 | |a glaucoma | |
650 | 4 | |a altitude | |
650 | 4 | |a intraocular pressure | |
650 | 4 | |a mathematical modeling | |
650 | 4 | |a physiology-enhanced data analytics | |
653 | 0 | |a Applied optics. Photonics | |
700 | 0 | |a Alon Harris |e verfasserin |4 aut | |
700 | 0 | |a Aditya Belamkar |e verfasserin |4 aut | |
700 | 0 | |a Ryan Zukerman |e verfasserin |4 aut | |
700 | 0 | |a Lucia Carichino |e verfasserin |4 aut | |
700 | 0 | |a Marcela Szopos |e verfasserin |4 aut | |
700 | 0 | |a Brent Siesky |e verfasserin |4 aut | |
700 | 0 | |a Luciano Quaranta |e verfasserin |4 aut | |
700 | 0 | |a Carlo Bruttini |e verfasserin |4 aut | |
700 | 0 | |a Francesco Oddone |e verfasserin |4 aut | |
700 | 0 | |a Ivano Riva |e verfasserin |4 aut | |
700 | 0 | |a Giovanna Guidoboni |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Photonics |d MDPI AG, 2014 |g 9(2022), 3, p 158 |w (DE-627)786192763 |w (DE-600)2770002-1 |x 23046732 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:3, p 158 |
856 | 4 | 0 | |u https://doi.org/10.3390/photonics9030158 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2304-6732/9/3/158 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2304-6732 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 3, p 158 |
author_variant |
a v v avv a h ah a b ab r z rz l c lc m s ms b s bs l q lq c b cb f o fo i r ir g g gg |
---|---|
matchkey_str |
article:23046732:2022----::hsooynacdaanltcteauttefetfliuennrouap |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/photonics9030158 doi (DE-627)DOAJ046807268 (DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8 DE-627 ger DE-627 rakwb eng TA1501-1820 Alice Verticchio Vercellin verfasserin aut Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. glaucoma altitude intraocular pressure mathematical modeling physiology-enhanced data analytics Applied optics. Photonics Alon Harris verfasserin aut Aditya Belamkar verfasserin aut Ryan Zukerman verfasserin aut Lucia Carichino verfasserin aut Marcela Szopos verfasserin aut Brent Siesky verfasserin aut Luciano Quaranta verfasserin aut Carlo Bruttini verfasserin aut Francesco Oddone verfasserin aut Ivano Riva verfasserin aut Giovanna Guidoboni verfasserin aut In Photonics MDPI AG, 2014 9(2022), 3, p 158 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:9 year:2022 number:3, p 158 https://doi.org/10.3390/photonics9030158 kostenfrei https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8 kostenfrei https://www.mdpi.com/2304-6732/9/3/158 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 158 |
spelling |
10.3390/photonics9030158 doi (DE-627)DOAJ046807268 (DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8 DE-627 ger DE-627 rakwb eng TA1501-1820 Alice Verticchio Vercellin verfasserin aut Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. glaucoma altitude intraocular pressure mathematical modeling physiology-enhanced data analytics Applied optics. Photonics Alon Harris verfasserin aut Aditya Belamkar verfasserin aut Ryan Zukerman verfasserin aut Lucia Carichino verfasserin aut Marcela Szopos verfasserin aut Brent Siesky verfasserin aut Luciano Quaranta verfasserin aut Carlo Bruttini verfasserin aut Francesco Oddone verfasserin aut Ivano Riva verfasserin aut Giovanna Guidoboni verfasserin aut In Photonics MDPI AG, 2014 9(2022), 3, p 158 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:9 year:2022 number:3, p 158 https://doi.org/10.3390/photonics9030158 kostenfrei https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8 kostenfrei https://www.mdpi.com/2304-6732/9/3/158 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 158 |
allfields_unstemmed |
10.3390/photonics9030158 doi (DE-627)DOAJ046807268 (DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8 DE-627 ger DE-627 rakwb eng TA1501-1820 Alice Verticchio Vercellin verfasserin aut Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. glaucoma altitude intraocular pressure mathematical modeling physiology-enhanced data analytics Applied optics. Photonics Alon Harris verfasserin aut Aditya Belamkar verfasserin aut Ryan Zukerman verfasserin aut Lucia Carichino verfasserin aut Marcela Szopos verfasserin aut Brent Siesky verfasserin aut Luciano Quaranta verfasserin aut Carlo Bruttini verfasserin aut Francesco Oddone verfasserin aut Ivano Riva verfasserin aut Giovanna Guidoboni verfasserin aut In Photonics MDPI AG, 2014 9(2022), 3, p 158 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:9 year:2022 number:3, p 158 https://doi.org/10.3390/photonics9030158 kostenfrei https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8 kostenfrei https://www.mdpi.com/2304-6732/9/3/158 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 158 |
allfieldsGer |
10.3390/photonics9030158 doi (DE-627)DOAJ046807268 (DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8 DE-627 ger DE-627 rakwb eng TA1501-1820 Alice Verticchio Vercellin verfasserin aut Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. glaucoma altitude intraocular pressure mathematical modeling physiology-enhanced data analytics Applied optics. Photonics Alon Harris verfasserin aut Aditya Belamkar verfasserin aut Ryan Zukerman verfasserin aut Lucia Carichino verfasserin aut Marcela Szopos verfasserin aut Brent Siesky verfasserin aut Luciano Quaranta verfasserin aut Carlo Bruttini verfasserin aut Francesco Oddone verfasserin aut Ivano Riva verfasserin aut Giovanna Guidoboni verfasserin aut In Photonics MDPI AG, 2014 9(2022), 3, p 158 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:9 year:2022 number:3, p 158 https://doi.org/10.3390/photonics9030158 kostenfrei https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8 kostenfrei https://www.mdpi.com/2304-6732/9/3/158 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 158 |
allfieldsSound |
10.3390/photonics9030158 doi (DE-627)DOAJ046807268 (DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8 DE-627 ger DE-627 rakwb eng TA1501-1820 Alice Verticchio Vercellin verfasserin aut Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. glaucoma altitude intraocular pressure mathematical modeling physiology-enhanced data analytics Applied optics. Photonics Alon Harris verfasserin aut Aditya Belamkar verfasserin aut Ryan Zukerman verfasserin aut Lucia Carichino verfasserin aut Marcela Szopos verfasserin aut Brent Siesky verfasserin aut Luciano Quaranta verfasserin aut Carlo Bruttini verfasserin aut Francesco Oddone verfasserin aut Ivano Riva verfasserin aut Giovanna Guidoboni verfasserin aut In Photonics MDPI AG, 2014 9(2022), 3, p 158 (DE-627)786192763 (DE-600)2770002-1 23046732 nnns volume:9 year:2022 number:3, p 158 https://doi.org/10.3390/photonics9030158 kostenfrei https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8 kostenfrei https://www.mdpi.com/2304-6732/9/3/158 kostenfrei https://doaj.org/toc/2304-6732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 158 |
language |
English |
source |
In Photonics 9(2022), 3, p 158 volume:9 year:2022 number:3, p 158 |
sourceStr |
In Photonics 9(2022), 3, p 158 volume:9 year:2022 number:3, p 158 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
glaucoma altitude intraocular pressure mathematical modeling physiology-enhanced data analytics Applied optics. Photonics |
isfreeaccess_bool |
true |
container_title |
Photonics |
authorswithroles_txt_mv |
Alice Verticchio Vercellin @@aut@@ Alon Harris @@aut@@ Aditya Belamkar @@aut@@ Ryan Zukerman @@aut@@ Lucia Carichino @@aut@@ Marcela Szopos @@aut@@ Brent Siesky @@aut@@ Luciano Quaranta @@aut@@ Carlo Bruttini @@aut@@ Francesco Oddone @@aut@@ Ivano Riva @@aut@@ Giovanna Guidoboni @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
786192763 |
id |
DOAJ046807268 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046807268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414134151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/photonics9030158</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046807268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alice Verticchio Vercellin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glaucoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">altitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intraocular pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physiology-enhanced data analytics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alon Harris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aditya Belamkar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan Zukerman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucia Carichino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcela Szopos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brent Siesky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luciano Quaranta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carlo Bruttini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesco Oddone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ivano Riva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanna Guidoboni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Photonics</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">9(2022), 3, p 158</subfield><subfield code="w">(DE-627)786192763</subfield><subfield code="w">(DE-600)2770002-1</subfield><subfield code="x">23046732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 158</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/photonics9030158</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-6732/9/3/158</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-6732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 158</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Alice Verticchio Vercellin |
spellingShingle |
Alice Verticchio Vercellin misc TA1501-1820 misc glaucoma misc altitude misc intraocular pressure misc mathematical modeling misc physiology-enhanced data analytics misc Applied optics. Photonics Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics |
authorStr |
Alice Verticchio Vercellin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)786192763 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1501-1820 |
illustrated |
Not Illustrated |
issn |
23046732 |
topic_title |
TA1501-1820 Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics glaucoma altitude intraocular pressure mathematical modeling physiology-enhanced data analytics |
topic |
misc TA1501-1820 misc glaucoma misc altitude misc intraocular pressure misc mathematical modeling misc physiology-enhanced data analytics misc Applied optics. Photonics |
topic_unstemmed |
misc TA1501-1820 misc glaucoma misc altitude misc intraocular pressure misc mathematical modeling misc physiology-enhanced data analytics misc Applied optics. Photonics |
topic_browse |
misc TA1501-1820 misc glaucoma misc altitude misc intraocular pressure misc mathematical modeling misc physiology-enhanced data analytics misc Applied optics. Photonics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Photonics |
hierarchy_parent_id |
786192763 |
hierarchy_top_title |
Photonics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)786192763 (DE-600)2770002-1 |
title |
Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics |
ctrlnum |
(DE-627)DOAJ046807268 (DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8 |
title_full |
Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics |
author_sort |
Alice Verticchio Vercellin |
journal |
Photonics |
journalStr |
Photonics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Alice Verticchio Vercellin Alon Harris Aditya Belamkar Ryan Zukerman Lucia Carichino Marcela Szopos Brent Siesky Luciano Quaranta Carlo Bruttini Francesco Oddone Ivano Riva Giovanna Guidoboni |
container_volume |
9 |
class |
TA1501-1820 |
format_se |
Elektronische Aufsätze |
author-letter |
Alice Verticchio Vercellin |
doi_str_mv |
10.3390/photonics9030158 |
author2-role |
verfasserin |
title_sort |
physiology-enhanced data analytics to evaluate the effect of altitude on intraocular pressure and ocular hemodynamics |
callnumber |
TA1501-1820 |
title_auth |
Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics |
abstract |
Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. |
abstractGer |
Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. |
abstract_unstemmed |
Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 158 |
title_short |
Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics |
url |
https://doi.org/10.3390/photonics9030158 https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8 https://www.mdpi.com/2304-6732/9/3/158 https://doaj.org/toc/2304-6732 |
remote_bool |
true |
author2 |
Alon Harris Aditya Belamkar Ryan Zukerman Lucia Carichino Marcela Szopos Brent Siesky Luciano Quaranta Carlo Bruttini Francesco Oddone Ivano Riva Giovanna Guidoboni |
author2Str |
Alon Harris Aditya Belamkar Ryan Zukerman Lucia Carichino Marcela Szopos Brent Siesky Luciano Quaranta Carlo Bruttini Francesco Oddone Ivano Riva Giovanna Guidoboni |
ppnlink |
786192763 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/photonics9030158 |
callnumber-a |
TA1501-1820 |
up_date |
2024-07-03T22:38:57.742Z |
_version_ |
1803599308646252544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046807268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414134151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/photonics9030158</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046807268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c7e70baf1504a10860bf42fc3eb7dc8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alice Verticchio Vercellin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (<i<pe-</i<) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. <i<Pe-retinal hemodynamics</i< analysis predicted a statistically significant increase (<i<p</i< < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (<i<p</i< < 0.001) and retinal venules (<i<p</i< = 0.003) and a non-significant increase in the resistance in the central retinal vein (<i<p</i< = 0.253). <i<Pe-aqueous humor</i< analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glaucoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">altitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intraocular pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physiology-enhanced data analytics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alon Harris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aditya Belamkar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan Zukerman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucia Carichino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcela Szopos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Brent Siesky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luciano Quaranta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carlo Bruttini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesco Oddone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ivano Riva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanna Guidoboni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Photonics</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">9(2022), 3, p 158</subfield><subfield code="w">(DE-627)786192763</subfield><subfield code="w">(DE-600)2770002-1</subfield><subfield code="x">23046732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 158</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/photonics9030158</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c7e70baf1504a10860bf42fc3eb7dc8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2304-6732/9/3/158</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2304-6732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 158</subfield></datafield></record></collection>
|
score |
7.401636 |