Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations
A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from...
Ausführliche Beschreibung
Autor*in: |
L. Wu [verfasserIn] Y. Gu [verfasserIn] J. H. Jiang [verfasserIn] H. Su [verfasserIn] N. Yu [verfasserIn] C. Zhao [verfasserIn] Y. Qian [verfasserIn] B. Zhao [verfasserIn] K.-N. Liou [verfasserIn] Y.-S. Choi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Übergeordnetes Werk: |
In: Atmospheric Chemistry and Physics - Copernicus Publications, 2003, 18(2018), Seite 5529-5547 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2018 ; pages:5529-5547 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5194/acp-18-5529-2018 |
---|
Katalog-ID: |
DOAJ046879099 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046879099 | ||
003 | DE-627 | ||
005 | 20230308114644.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5194/acp-18-5529-2018 |2 doi | |
035 | |a (DE-627)DOAJ046879099 | ||
035 | |a (DE-599)DOAJ71ce64fb71f942dfa466af026c873b53 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a L. Wu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. | ||
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Y. Gu |e verfasserin |4 aut | |
700 | 0 | |a J. H. Jiang |e verfasserin |4 aut | |
700 | 0 | |a H. Su |e verfasserin |4 aut | |
700 | 0 | |a N. Yu |e verfasserin |4 aut | |
700 | 0 | |a C. Zhao |e verfasserin |4 aut | |
700 | 0 | |a Y. Qian |e verfasserin |4 aut | |
700 | 0 | |a B. Zhao |e verfasserin |4 aut | |
700 | 0 | |a K.-N. Liou |e verfasserin |4 aut | |
700 | 0 | |a Y.-S. Choi |e verfasserin |4 aut | |
700 | 0 | |a Y.-S. Choi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmospheric Chemistry and Physics |d Copernicus Publications, 2003 |g 18(2018), Seite 5529-5547 |w (DE-627)092499996 |x 16807324 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2018 |g pages:5529-5547 |
856 | 4 | 0 | |u https://doi.org/10.5194/acp-18-5529-2018 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/71ce64fb71f942dfa466af026c873b53 |z kostenfrei |
856 | 4 | 0 | |u https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7316 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1680-7324 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_381 | ||
951 | |a AR | ||
952 | |d 18 |j 2018 |h 5529-5547 |
author_variant |
l w lw y g yg j h j jhj h s hs n y ny c z cz y q yq b z bz k n l knl y s c ysc y s c ysc |
---|---|
matchkey_str |
article:16807324:2018----::matoarslosaoapeiiainnsopciclfribsdnovcin |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QC |
publishDate |
2018 |
allfields |
10.5194/acp-18-5529-2018 doi (DE-627)DOAJ046879099 (DE-599)DOAJ71ce64fb71f942dfa466af026c873b53 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 L. Wu verfasserin aut Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. Physics Chemistry Y. Gu verfasserin aut J. H. Jiang verfasserin aut H. Su verfasserin aut N. Yu verfasserin aut C. Zhao verfasserin aut Y. Qian verfasserin aut B. Zhao verfasserin aut K.-N. Liou verfasserin aut Y.-S. Choi verfasserin aut Y.-S. Choi verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 18(2018), Seite 5529-5547 (DE-627)092499996 16807324 nnns volume:18 year:2018 pages:5529-5547 https://doi.org/10.5194/acp-18-5529-2018 kostenfrei https://doaj.org/article/71ce64fb71f942dfa466af026c873b53 kostenfrei https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 18 2018 5529-5547 |
spelling |
10.5194/acp-18-5529-2018 doi (DE-627)DOAJ046879099 (DE-599)DOAJ71ce64fb71f942dfa466af026c873b53 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 L. Wu verfasserin aut Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. Physics Chemistry Y. Gu verfasserin aut J. H. Jiang verfasserin aut H. Su verfasserin aut N. Yu verfasserin aut C. Zhao verfasserin aut Y. Qian verfasserin aut B. Zhao verfasserin aut K.-N. Liou verfasserin aut Y.-S. Choi verfasserin aut Y.-S. Choi verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 18(2018), Seite 5529-5547 (DE-627)092499996 16807324 nnns volume:18 year:2018 pages:5529-5547 https://doi.org/10.5194/acp-18-5529-2018 kostenfrei https://doaj.org/article/71ce64fb71f942dfa466af026c873b53 kostenfrei https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 18 2018 5529-5547 |
allfields_unstemmed |
10.5194/acp-18-5529-2018 doi (DE-627)DOAJ046879099 (DE-599)DOAJ71ce64fb71f942dfa466af026c873b53 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 L. Wu verfasserin aut Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. Physics Chemistry Y. Gu verfasserin aut J. H. Jiang verfasserin aut H. Su verfasserin aut N. Yu verfasserin aut C. Zhao verfasserin aut Y. Qian verfasserin aut B. Zhao verfasserin aut K.-N. Liou verfasserin aut Y.-S. Choi verfasserin aut Y.-S. Choi verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 18(2018), Seite 5529-5547 (DE-627)092499996 16807324 nnns volume:18 year:2018 pages:5529-5547 https://doi.org/10.5194/acp-18-5529-2018 kostenfrei https://doaj.org/article/71ce64fb71f942dfa466af026c873b53 kostenfrei https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 18 2018 5529-5547 |
allfieldsGer |
10.5194/acp-18-5529-2018 doi (DE-627)DOAJ046879099 (DE-599)DOAJ71ce64fb71f942dfa466af026c873b53 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 L. Wu verfasserin aut Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. Physics Chemistry Y. Gu verfasserin aut J. H. Jiang verfasserin aut H. Su verfasserin aut N. Yu verfasserin aut C. Zhao verfasserin aut Y. Qian verfasserin aut B. Zhao verfasserin aut K.-N. Liou verfasserin aut Y.-S. Choi verfasserin aut Y.-S. Choi verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 18(2018), Seite 5529-5547 (DE-627)092499996 16807324 nnns volume:18 year:2018 pages:5529-5547 https://doi.org/10.5194/acp-18-5529-2018 kostenfrei https://doaj.org/article/71ce64fb71f942dfa466af026c873b53 kostenfrei https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 18 2018 5529-5547 |
allfieldsSound |
10.5194/acp-18-5529-2018 doi (DE-627)DOAJ046879099 (DE-599)DOAJ71ce64fb71f942dfa466af026c873b53 DE-627 ger DE-627 rakwb eng QC1-999 QD1-999 L. Wu verfasserin aut Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. Physics Chemistry Y. Gu verfasserin aut J. H. Jiang verfasserin aut H. Su verfasserin aut N. Yu verfasserin aut C. Zhao verfasserin aut Y. Qian verfasserin aut B. Zhao verfasserin aut K.-N. Liou verfasserin aut Y.-S. Choi verfasserin aut Y.-S. Choi verfasserin aut In Atmospheric Chemistry and Physics Copernicus Publications, 2003 18(2018), Seite 5529-5547 (DE-627)092499996 16807324 nnns volume:18 year:2018 pages:5529-5547 https://doi.org/10.5194/acp-18-5529-2018 kostenfrei https://doaj.org/article/71ce64fb71f942dfa466af026c873b53 kostenfrei https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf kostenfrei https://doaj.org/toc/1680-7316 Journal toc kostenfrei https://doaj.org/toc/1680-7324 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 AR 18 2018 5529-5547 |
language |
English |
source |
In Atmospheric Chemistry and Physics 18(2018), Seite 5529-5547 volume:18 year:2018 pages:5529-5547 |
sourceStr |
In Atmospheric Chemistry and Physics 18(2018), Seite 5529-5547 volume:18 year:2018 pages:5529-5547 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Atmospheric Chemistry and Physics |
authorswithroles_txt_mv |
L. Wu @@aut@@ Y. Gu @@aut@@ J. H. Jiang @@aut@@ H. Su @@aut@@ N. Yu @@aut@@ C. Zhao @@aut@@ Y. Qian @@aut@@ B. Zhao @@aut@@ K.-N. Liou @@aut@@ Y.-S. Choi @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
092499996 |
id |
DOAJ046879099 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046879099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308114644.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/acp-18-5529-2018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046879099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ71ce64fb71f942dfa466af026c873b53</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. H. Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">H. Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">N. Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Qian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B. Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K.-N. Liou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y.-S. Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y.-S. Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">18(2018), Seite 5529-5547</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:5529-5547</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/acp-18-5529-2018</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/71ce64fb71f942dfa466af026c873b53</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="h">5529-5547</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
L. Wu |
spellingShingle |
L. Wu misc QC1-999 misc QD1-999 misc Physics misc Chemistry Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations |
authorStr |
L. Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)092499996 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
16807324 |
topic_title |
QC1-999 QD1-999 Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations |
topic |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_unstemmed |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
topic_browse |
misc QC1-999 misc QD1-999 misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmospheric Chemistry and Physics |
hierarchy_parent_id |
092499996 |
hierarchy_top_title |
Atmospheric Chemistry and Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)092499996 |
title |
Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations |
ctrlnum |
(DE-627)DOAJ046879099 (DE-599)DOAJ71ce64fb71f942dfa466af026c873b53 |
title_full |
Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations |
author_sort |
L. Wu |
journal |
Atmospheric Chemistry and Physics |
journalStr |
Atmospheric Chemistry and Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
5529 |
author_browse |
L. Wu Y. Gu J. H. Jiang H. Su N. Yu C. Zhao Y. Qian B. Zhao K.-N. Liou Y.-S. Choi |
container_volume |
18 |
class |
QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
L. Wu |
doi_str_mv |
10.5194/acp-18-5529-2018 |
author2-role |
verfasserin |
title_sort |
impacts of aerosols on seasonal precipitation and snowpack in california based on convection-permitting wrf-chem simulations |
callnumber |
QC1-999 |
title_auth |
Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations |
abstract |
A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. |
abstractGer |
A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. |
abstract_unstemmed |
A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_381 |
title_short |
Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations |
url |
https://doi.org/10.5194/acp-18-5529-2018 https://doaj.org/article/71ce64fb71f942dfa466af026c873b53 https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 |
remote_bool |
true |
author2 |
Y. Gu J. H. Jiang H. Su N. Yu C. Zhao Y. Qian B. Zhao K.-N. Liou Y.-S. Choi |
author2Str |
Y. Gu J. H. Jiang H. Su N. Yu C. Zhao Y. Qian B. Zhao K.-N. Liou Y.-S. Choi |
ppnlink |
092499996 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5194/acp-18-5529-2018 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T23:01:32.136Z |
_version_ |
1803600728832344064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046879099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308114644.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/acp-18-5529-2018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046879099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ71ce64fb71f942dfa466af026c873b53</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about −0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ∼ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. H. Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">H. Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">N. Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Qian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B. Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K.-N. Liou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y.-S. Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y.-S. Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Chemistry and Physics</subfield><subfield code="d">Copernicus Publications, 2003</subfield><subfield code="g">18(2018), Seite 5529-5547</subfield><subfield code="w">(DE-627)092499996</subfield><subfield code="x">16807324</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:5529-5547</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/acp-18-5529-2018</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/71ce64fb71f942dfa466af026c873b53</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.atmos-chem-phys.net/18/5529/2018/acp-18-5529-2018.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7316</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1680-7324</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="h">5529-5547</subfield></datafield></record></collection>
|
score |
7.401102 |