The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging
Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the c...
Ausführliche Beschreibung
Autor*in: |
Harry J. Whitwell [verfasserIn] Maria Giulia Bacalini [verfasserIn] Oleg Blyuss [verfasserIn] Shangbin Chen [verfasserIn] Paolo Garagnani [verfasserIn] Susan Yu Gordleeva [verfasserIn] Sarika Jalan [verfasserIn] Mikhail Ivanchenko [verfasserIn] Oleg Kanakov [verfasserIn] Valentina Kustikova [verfasserIn] Ines P. Mariño [verfasserIn] Iosif Meyerov [verfasserIn] Ekkehard Ullner [verfasserIn] Claudio Franceschi [verfasserIn] Alexey Zaikin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Aging Neuroscience - Frontiers Media S.A., 2010, 12(2020) |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 |
Links: |
---|
DOI / URN: |
10.3389/fnagi.2020.00136 |
---|
Katalog-ID: |
DOAJ046925333 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046925333 | ||
003 | DE-627 | ||
005 | 20230308115052.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fnagi.2020.00136 |2 doi | |
035 | |a (DE-627)DOAJ046925333 | ||
035 | |a (DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC321-571 | |
100 | 0 | |a Harry J. Whitwell |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. | ||
650 | 4 | |a propagation of aging | |
650 | 4 | |a network analysis | |
650 | 4 | |a digital medicine | |
650 | 4 | |a aging | |
650 | 4 | |a inflammaging | |
653 | 0 | |a Neurosciences. Biological psychiatry. Neuropsychiatry | |
700 | 0 | |a Maria Giulia Bacalini |e verfasserin |4 aut | |
700 | 0 | |a Oleg Blyuss |e verfasserin |4 aut | |
700 | 0 | |a Oleg Blyuss |e verfasserin |4 aut | |
700 | 0 | |a Shangbin Chen |e verfasserin |4 aut | |
700 | 0 | |a Paolo Garagnani |e verfasserin |4 aut | |
700 | 0 | |a Susan Yu Gordleeva |e verfasserin |4 aut | |
700 | 0 | |a Sarika Jalan |e verfasserin |4 aut | |
700 | 0 | |a Sarika Jalan |e verfasserin |4 aut | |
700 | 0 | |a Mikhail Ivanchenko |e verfasserin |4 aut | |
700 | 0 | |a Oleg Kanakov |e verfasserin |4 aut | |
700 | 0 | |a Valentina Kustikova |e verfasserin |4 aut | |
700 | 0 | |a Ines P. Mariño |e verfasserin |4 aut | |
700 | 0 | |a Iosif Meyerov |e verfasserin |4 aut | |
700 | 0 | |a Ekkehard Ullner |e verfasserin |4 aut | |
700 | 0 | |a Claudio Franceschi |e verfasserin |4 aut | |
700 | 0 | |a Claudio Franceschi |e verfasserin |4 aut | |
700 | 0 | |a Alexey Zaikin |e verfasserin |4 aut | |
700 | 0 | |a Alexey Zaikin |e verfasserin |4 aut | |
700 | 0 | |a Alexey Zaikin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Aging Neuroscience |d Frontiers Media S.A., 2010 |g 12(2020) |w (DE-627)629834350 |w (DE-600)2558898-9 |x 16634365 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.3389/fnagi.2020.00136 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1663-4365 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |
author_variant |
h j w hjw m g b mgb o b ob o b ob s c sc p g pg s y g syg s j sj s j sj m i mi o k ok v k vk i p m ipm i m im e u eu c f cf c f cf a z az a z az a z az |
---|---|
matchkey_str |
article:16634365:2020----::hhmnoyssprewrdgtlehdtaaye |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RC |
publishDate |
2020 |
allfields |
10.3389/fnagi.2020.00136 doi (DE-627)DOAJ046925333 (DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a DE-627 ger DE-627 rakwb eng RC321-571 Harry J. Whitwell verfasserin aut The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. propagation of aging network analysis digital medicine aging inflammaging Neurosciences. Biological psychiatry. Neuropsychiatry Maria Giulia Bacalini verfasserin aut Oleg Blyuss verfasserin aut Oleg Blyuss verfasserin aut Shangbin Chen verfasserin aut Paolo Garagnani verfasserin aut Susan Yu Gordleeva verfasserin aut Sarika Jalan verfasserin aut Sarika Jalan verfasserin aut Mikhail Ivanchenko verfasserin aut Oleg Kanakov verfasserin aut Valentina Kustikova verfasserin aut Ines P. Mariño verfasserin aut Iosif Meyerov verfasserin aut Ekkehard Ullner verfasserin aut Claudio Franceschi verfasserin aut Claudio Franceschi verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut In Frontiers in Aging Neuroscience Frontiers Media S.A., 2010 12(2020) (DE-627)629834350 (DE-600)2558898-9 16634365 nnns volume:12 year:2020 https://doi.org/10.3389/fnagi.2020.00136 kostenfrei https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a kostenfrei https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full kostenfrei https://doaj.org/toc/1663-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 |
spelling |
10.3389/fnagi.2020.00136 doi (DE-627)DOAJ046925333 (DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a DE-627 ger DE-627 rakwb eng RC321-571 Harry J. Whitwell verfasserin aut The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. propagation of aging network analysis digital medicine aging inflammaging Neurosciences. Biological psychiatry. Neuropsychiatry Maria Giulia Bacalini verfasserin aut Oleg Blyuss verfasserin aut Oleg Blyuss verfasserin aut Shangbin Chen verfasserin aut Paolo Garagnani verfasserin aut Susan Yu Gordleeva verfasserin aut Sarika Jalan verfasserin aut Sarika Jalan verfasserin aut Mikhail Ivanchenko verfasserin aut Oleg Kanakov verfasserin aut Valentina Kustikova verfasserin aut Ines P. Mariño verfasserin aut Iosif Meyerov verfasserin aut Ekkehard Ullner verfasserin aut Claudio Franceschi verfasserin aut Claudio Franceschi verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut In Frontiers in Aging Neuroscience Frontiers Media S.A., 2010 12(2020) (DE-627)629834350 (DE-600)2558898-9 16634365 nnns volume:12 year:2020 https://doi.org/10.3389/fnagi.2020.00136 kostenfrei https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a kostenfrei https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full kostenfrei https://doaj.org/toc/1663-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 |
allfields_unstemmed |
10.3389/fnagi.2020.00136 doi (DE-627)DOAJ046925333 (DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a DE-627 ger DE-627 rakwb eng RC321-571 Harry J. Whitwell verfasserin aut The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. propagation of aging network analysis digital medicine aging inflammaging Neurosciences. Biological psychiatry. Neuropsychiatry Maria Giulia Bacalini verfasserin aut Oleg Blyuss verfasserin aut Oleg Blyuss verfasserin aut Shangbin Chen verfasserin aut Paolo Garagnani verfasserin aut Susan Yu Gordleeva verfasserin aut Sarika Jalan verfasserin aut Sarika Jalan verfasserin aut Mikhail Ivanchenko verfasserin aut Oleg Kanakov verfasserin aut Valentina Kustikova verfasserin aut Ines P. Mariño verfasserin aut Iosif Meyerov verfasserin aut Ekkehard Ullner verfasserin aut Claudio Franceschi verfasserin aut Claudio Franceschi verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut In Frontiers in Aging Neuroscience Frontiers Media S.A., 2010 12(2020) (DE-627)629834350 (DE-600)2558898-9 16634365 nnns volume:12 year:2020 https://doi.org/10.3389/fnagi.2020.00136 kostenfrei https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a kostenfrei https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full kostenfrei https://doaj.org/toc/1663-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 |
allfieldsGer |
10.3389/fnagi.2020.00136 doi (DE-627)DOAJ046925333 (DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a DE-627 ger DE-627 rakwb eng RC321-571 Harry J. Whitwell verfasserin aut The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. propagation of aging network analysis digital medicine aging inflammaging Neurosciences. Biological psychiatry. Neuropsychiatry Maria Giulia Bacalini verfasserin aut Oleg Blyuss verfasserin aut Oleg Blyuss verfasserin aut Shangbin Chen verfasserin aut Paolo Garagnani verfasserin aut Susan Yu Gordleeva verfasserin aut Sarika Jalan verfasserin aut Sarika Jalan verfasserin aut Mikhail Ivanchenko verfasserin aut Oleg Kanakov verfasserin aut Valentina Kustikova verfasserin aut Ines P. Mariño verfasserin aut Iosif Meyerov verfasserin aut Ekkehard Ullner verfasserin aut Claudio Franceschi verfasserin aut Claudio Franceschi verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut In Frontiers in Aging Neuroscience Frontiers Media S.A., 2010 12(2020) (DE-627)629834350 (DE-600)2558898-9 16634365 nnns volume:12 year:2020 https://doi.org/10.3389/fnagi.2020.00136 kostenfrei https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a kostenfrei https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full kostenfrei https://doaj.org/toc/1663-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 |
allfieldsSound |
10.3389/fnagi.2020.00136 doi (DE-627)DOAJ046925333 (DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a DE-627 ger DE-627 rakwb eng RC321-571 Harry J. Whitwell verfasserin aut The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. propagation of aging network analysis digital medicine aging inflammaging Neurosciences. Biological psychiatry. Neuropsychiatry Maria Giulia Bacalini verfasserin aut Oleg Blyuss verfasserin aut Oleg Blyuss verfasserin aut Shangbin Chen verfasserin aut Paolo Garagnani verfasserin aut Susan Yu Gordleeva verfasserin aut Sarika Jalan verfasserin aut Sarika Jalan verfasserin aut Mikhail Ivanchenko verfasserin aut Oleg Kanakov verfasserin aut Valentina Kustikova verfasserin aut Ines P. Mariño verfasserin aut Iosif Meyerov verfasserin aut Ekkehard Ullner verfasserin aut Claudio Franceschi verfasserin aut Claudio Franceschi verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut Alexey Zaikin verfasserin aut In Frontiers in Aging Neuroscience Frontiers Media S.A., 2010 12(2020) (DE-627)629834350 (DE-600)2558898-9 16634365 nnns volume:12 year:2020 https://doi.org/10.3389/fnagi.2020.00136 kostenfrei https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a kostenfrei https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full kostenfrei https://doaj.org/toc/1663-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 |
language |
English |
source |
In Frontiers in Aging Neuroscience 12(2020) volume:12 year:2020 |
sourceStr |
In Frontiers in Aging Neuroscience 12(2020) volume:12 year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
propagation of aging network analysis digital medicine aging inflammaging Neurosciences. Biological psychiatry. Neuropsychiatry |
isfreeaccess_bool |
true |
container_title |
Frontiers in Aging Neuroscience |
authorswithroles_txt_mv |
Harry J. Whitwell @@aut@@ Maria Giulia Bacalini @@aut@@ Oleg Blyuss @@aut@@ Shangbin Chen @@aut@@ Paolo Garagnani @@aut@@ Susan Yu Gordleeva @@aut@@ Sarika Jalan @@aut@@ Mikhail Ivanchenko @@aut@@ Oleg Kanakov @@aut@@ Valentina Kustikova @@aut@@ Ines P. Mariño @@aut@@ Iosif Meyerov @@aut@@ Ekkehard Ullner @@aut@@ Claudio Franceschi @@aut@@ Alexey Zaikin @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
629834350 |
id |
DOAJ046925333 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046925333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308115052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fnagi.2020.00136</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046925333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Harry J. Whitwell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">propagation of aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inflammaging</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Giulia Bacalini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Blyuss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Blyuss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangbin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Garagnani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susan Yu Gordleeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sarika Jalan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sarika Jalan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikhail Ivanchenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Kanakov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valentina Kustikova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ines P. Mariño</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Iosif Meyerov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ekkehard Ullner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio Franceschi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio Franceschi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Aging Neuroscience</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">12(2020)</subfield><subfield code="w">(DE-627)629834350</subfield><subfield code="w">(DE-600)2558898-9</subfield><subfield code="x">16634365</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fnagi.2020.00136</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1663-4365</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Harry J. Whitwell |
spellingShingle |
Harry J. Whitwell misc RC321-571 misc propagation of aging misc network analysis misc digital medicine misc aging misc inflammaging misc Neurosciences. Biological psychiatry. Neuropsychiatry The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging |
authorStr |
Harry J. Whitwell |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)629834350 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC321-571 |
illustrated |
Not Illustrated |
issn |
16634365 |
topic_title |
RC321-571 The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging propagation of aging network analysis digital medicine aging inflammaging |
topic |
misc RC321-571 misc propagation of aging misc network analysis misc digital medicine misc aging misc inflammaging misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_unstemmed |
misc RC321-571 misc propagation of aging misc network analysis misc digital medicine misc aging misc inflammaging misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_browse |
misc RC321-571 misc propagation of aging misc network analysis misc digital medicine misc aging misc inflammaging misc Neurosciences. Biological psychiatry. Neuropsychiatry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Aging Neuroscience |
hierarchy_parent_id |
629834350 |
hierarchy_top_title |
Frontiers in Aging Neuroscience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)629834350 (DE-600)2558898-9 |
title |
The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging |
ctrlnum |
(DE-627)DOAJ046925333 (DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a |
title_full |
The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging |
author_sort |
Harry J. Whitwell |
journal |
Frontiers in Aging Neuroscience |
journalStr |
Frontiers in Aging Neuroscience |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Harry J. Whitwell Maria Giulia Bacalini Oleg Blyuss Shangbin Chen Paolo Garagnani Susan Yu Gordleeva Sarika Jalan Mikhail Ivanchenko Oleg Kanakov Valentina Kustikova Ines P. Mariño Iosif Meyerov Ekkehard Ullner Claudio Franceschi Alexey Zaikin |
container_volume |
12 |
class |
RC321-571 |
format_se |
Elektronische Aufsätze |
author-letter |
Harry J. Whitwell |
doi_str_mv |
10.3389/fnagi.2020.00136 |
author2-role |
verfasserin |
title_sort |
human body as a super network: digital methods to analyze the propagation of aging |
callnumber |
RC321-571 |
title_auth |
The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging |
abstract |
Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. |
abstractGer |
Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. |
abstract_unstemmed |
Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging |
url |
https://doi.org/10.3389/fnagi.2020.00136 https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full https://doaj.org/toc/1663-4365 |
remote_bool |
true |
author2 |
Maria Giulia Bacalini Oleg Blyuss Shangbin Chen Paolo Garagnani Susan Yu Gordleeva Sarika Jalan Mikhail Ivanchenko Oleg Kanakov Valentina Kustikova Ines P. Mariño Iosif Meyerov Ekkehard Ullner Claudio Franceschi Alexey Zaikin |
author2Str |
Maria Giulia Bacalini Oleg Blyuss Shangbin Chen Paolo Garagnani Susan Yu Gordleeva Sarika Jalan Mikhail Ivanchenko Oleg Kanakov Valentina Kustikova Ines P. Mariño Iosif Meyerov Ekkehard Ullner Claudio Franceschi Alexey Zaikin |
ppnlink |
629834350 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fnagi.2020.00136 |
callnumber-a |
RC321-571 |
up_date |
2024-07-03T23:15:37.982Z |
_version_ |
1803601615770353664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046925333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308115052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fnagi.2020.00136</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046925333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ039b5d79b83f4355bb48fbe7f3ae3b2a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Harry J. Whitwell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">propagation of aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inflammaging</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Giulia Bacalini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Blyuss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Blyuss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangbin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Garagnani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susan Yu Gordleeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sarika Jalan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sarika Jalan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikhail Ivanchenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oleg Kanakov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valentina Kustikova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ines P. Mariño</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Iosif Meyerov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ekkehard Ullner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio Franceschi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio Franceschi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Aging Neuroscience</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">12(2020)</subfield><subfield code="w">(DE-627)629834350</subfield><subfield code="w">(DE-600)2558898-9</subfield><subfield code="x">16634365</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fnagi.2020.00136</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/039b5d79b83f4355bb48fbe7f3ae3b2a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/article/10.3389/fnagi.2020.00136/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1663-4365</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.400463 |