A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction
Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing hig...
Ausführliche Beschreibung
Autor*in: |
Joshua D. Blake [verfasserIn] Adrian Sescu [verfasserIn] David Thompson [verfasserIn] Yuji Hattori [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Aerospace - MDPI AG, 2014, 9(2022), 3, p 171 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:3, p 171 |
Links: |
---|
DOI / URN: |
10.3390/aerospace9030171 |
---|
Katalog-ID: |
DOAJ046983368 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ046983368 | ||
003 | DE-627 | ||
005 | 20240414140848.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/aerospace9030171 |2 doi | |
035 | |a (DE-627)DOAJ046983368 | ||
035 | |a (DE-599)DOAJc180ac38593b45dba2d27550b9497c4b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TL1-4050 | |
100 | 0 | |a Joshua D. Blake |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. | ||
650 | 4 | |a jet noise | |
650 | 4 | |a turbulence modeling | |
650 | 4 | |a synthetic turbulence | |
650 | 4 | |a CFD | |
653 | 0 | |a Motor vehicles. Aeronautics. Astronautics | |
700 | 0 | |a Adrian Sescu |e verfasserin |4 aut | |
700 | 0 | |a David Thompson |e verfasserin |4 aut | |
700 | 0 | |a Yuji Hattori |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Aerospace |d MDPI AG, 2014 |g 9(2022), 3, p 171 |w (DE-627)778375048 |w (DE-600)2756091-0 |x 22264310 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:3, p 171 |
856 | 4 | 0 | |u https://doi.org/10.3390/aerospace9030171 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2226-4310/9/3/171 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2226-4310 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 3, p 171 |
author_variant |
j d b jdb a s as d t dt y h yh |
---|---|
matchkey_str |
article:22264310:2022----::culdesnhtcublneehdojt |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TL |
publishDate |
2022 |
allfields |
10.3390/aerospace9030171 doi (DE-627)DOAJ046983368 (DE-599)DOAJc180ac38593b45dba2d27550b9497c4b DE-627 ger DE-627 rakwb eng TL1-4050 Joshua D. Blake verfasserin aut A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. jet noise turbulence modeling synthetic turbulence CFD Motor vehicles. Aeronautics. Astronautics Adrian Sescu verfasserin aut David Thompson verfasserin aut Yuji Hattori verfasserin aut In Aerospace MDPI AG, 2014 9(2022), 3, p 171 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:9 year:2022 number:3, p 171 https://doi.org/10.3390/aerospace9030171 kostenfrei https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b kostenfrei https://www.mdpi.com/2226-4310/9/3/171 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 171 |
spelling |
10.3390/aerospace9030171 doi (DE-627)DOAJ046983368 (DE-599)DOAJc180ac38593b45dba2d27550b9497c4b DE-627 ger DE-627 rakwb eng TL1-4050 Joshua D. Blake verfasserin aut A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. jet noise turbulence modeling synthetic turbulence CFD Motor vehicles. Aeronautics. Astronautics Adrian Sescu verfasserin aut David Thompson verfasserin aut Yuji Hattori verfasserin aut In Aerospace MDPI AG, 2014 9(2022), 3, p 171 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:9 year:2022 number:3, p 171 https://doi.org/10.3390/aerospace9030171 kostenfrei https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b kostenfrei https://www.mdpi.com/2226-4310/9/3/171 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 171 |
allfields_unstemmed |
10.3390/aerospace9030171 doi (DE-627)DOAJ046983368 (DE-599)DOAJc180ac38593b45dba2d27550b9497c4b DE-627 ger DE-627 rakwb eng TL1-4050 Joshua D. Blake verfasserin aut A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. jet noise turbulence modeling synthetic turbulence CFD Motor vehicles. Aeronautics. Astronautics Adrian Sescu verfasserin aut David Thompson verfasserin aut Yuji Hattori verfasserin aut In Aerospace MDPI AG, 2014 9(2022), 3, p 171 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:9 year:2022 number:3, p 171 https://doi.org/10.3390/aerospace9030171 kostenfrei https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b kostenfrei https://www.mdpi.com/2226-4310/9/3/171 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 171 |
allfieldsGer |
10.3390/aerospace9030171 doi (DE-627)DOAJ046983368 (DE-599)DOAJc180ac38593b45dba2d27550b9497c4b DE-627 ger DE-627 rakwb eng TL1-4050 Joshua D. Blake verfasserin aut A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. jet noise turbulence modeling synthetic turbulence CFD Motor vehicles. Aeronautics. Astronautics Adrian Sescu verfasserin aut David Thompson verfasserin aut Yuji Hattori verfasserin aut In Aerospace MDPI AG, 2014 9(2022), 3, p 171 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:9 year:2022 number:3, p 171 https://doi.org/10.3390/aerospace9030171 kostenfrei https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b kostenfrei https://www.mdpi.com/2226-4310/9/3/171 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 171 |
allfieldsSound |
10.3390/aerospace9030171 doi (DE-627)DOAJ046983368 (DE-599)DOAJc180ac38593b45dba2d27550b9497c4b DE-627 ger DE-627 rakwb eng TL1-4050 Joshua D. Blake verfasserin aut A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. jet noise turbulence modeling synthetic turbulence CFD Motor vehicles. Aeronautics. Astronautics Adrian Sescu verfasserin aut David Thompson verfasserin aut Yuji Hattori verfasserin aut In Aerospace MDPI AG, 2014 9(2022), 3, p 171 (DE-627)778375048 (DE-600)2756091-0 22264310 nnns volume:9 year:2022 number:3, p 171 https://doi.org/10.3390/aerospace9030171 kostenfrei https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b kostenfrei https://www.mdpi.com/2226-4310/9/3/171 kostenfrei https://doaj.org/toc/2226-4310 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 3, p 171 |
language |
English |
source |
In Aerospace 9(2022), 3, p 171 volume:9 year:2022 number:3, p 171 |
sourceStr |
In Aerospace 9(2022), 3, p 171 volume:9 year:2022 number:3, p 171 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
jet noise turbulence modeling synthetic turbulence CFD Motor vehicles. Aeronautics. Astronautics |
isfreeaccess_bool |
true |
container_title |
Aerospace |
authorswithroles_txt_mv |
Joshua D. Blake @@aut@@ Adrian Sescu @@aut@@ David Thompson @@aut@@ Yuji Hattori @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
778375048 |
id |
DOAJ046983368 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046983368</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414140848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/aerospace9030171</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046983368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc180ac38593b45dba2d27550b9497c4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL1-4050</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joshua D. Blake</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jet noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turbulence modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Motor vehicles. Aeronautics. Astronautics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adrian Sescu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Thompson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuji Hattori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Aerospace</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">9(2022), 3, p 171</subfield><subfield code="w">(DE-627)778375048</subfield><subfield code="w">(DE-600)2756091-0</subfield><subfield code="x">22264310</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 171</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/aerospace9030171</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2226-4310/9/3/171</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2226-4310</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 171</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Joshua D. Blake |
spellingShingle |
Joshua D. Blake misc TL1-4050 misc jet noise misc turbulence modeling misc synthetic turbulence misc CFD misc Motor vehicles. Aeronautics. Astronautics A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction |
authorStr |
Joshua D. Blake |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778375048 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TL1-4050 |
illustrated |
Not Illustrated |
issn |
22264310 |
topic_title |
TL1-4050 A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction jet noise turbulence modeling synthetic turbulence CFD |
topic |
misc TL1-4050 misc jet noise misc turbulence modeling misc synthetic turbulence misc CFD misc Motor vehicles. Aeronautics. Astronautics |
topic_unstemmed |
misc TL1-4050 misc jet noise misc turbulence modeling misc synthetic turbulence misc CFD misc Motor vehicles. Aeronautics. Astronautics |
topic_browse |
misc TL1-4050 misc jet noise misc turbulence modeling misc synthetic turbulence misc CFD misc Motor vehicles. Aeronautics. Astronautics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Aerospace |
hierarchy_parent_id |
778375048 |
hierarchy_top_title |
Aerospace |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778375048 (DE-600)2756091-0 |
title |
A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction |
ctrlnum |
(DE-627)DOAJ046983368 (DE-599)DOAJc180ac38593b45dba2d27550b9497c4b |
title_full |
A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction |
author_sort |
Joshua D. Blake |
journal |
Aerospace |
journalStr |
Aerospace |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Joshua D. Blake Adrian Sescu David Thompson Yuji Hattori |
container_volume |
9 |
class |
TL1-4050 |
format_se |
Elektronische Aufsätze |
author-letter |
Joshua D. Blake |
doi_str_mv |
10.3390/aerospace9030171 |
author2-role |
verfasserin |
title_sort |
coupled les-synthetic turbulence method for jet noise prediction |
callnumber |
TL1-4050 |
title_auth |
A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction |
abstract |
Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. |
abstractGer |
Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. |
abstract_unstemmed |
Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 171 |
title_short |
A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction |
url |
https://doi.org/10.3390/aerospace9030171 https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b https://www.mdpi.com/2226-4310/9/3/171 https://doaj.org/toc/2226-4310 |
remote_bool |
true |
author2 |
Adrian Sescu David Thompson Yuji Hattori |
author2Str |
Adrian Sescu David Thompson Yuji Hattori |
ppnlink |
778375048 |
callnumber-subject |
TL - Motor Vehicles and Aeronautics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/aerospace9030171 |
callnumber-a |
TL1-4050 |
up_date |
2024-07-03T23:31:27.782Z |
_version_ |
1803602611700498432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ046983368</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414140848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/aerospace9030171</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ046983368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc180ac38593b45dba2d27550b9497c4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL1-4050</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joshua D. Blake</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jet noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turbulence modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Motor vehicles. Aeronautics. Astronautics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adrian Sescu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Thompson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuji Hattori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Aerospace</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">9(2022), 3, p 171</subfield><subfield code="w">(DE-627)778375048</subfield><subfield code="w">(DE-600)2756091-0</subfield><subfield code="x">22264310</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 171</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/aerospace9030171</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c180ac38593b45dba2d27550b9497c4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2226-4310/9/3/171</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2226-4310</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 171</subfield></datafield></record></collection>
|
score |
7.3993254 |