On the Semi-Group Property of the Perpendicular Bisector in a Normed Space
Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(...
Ausführliche Beschreibung
Autor*in: |
Gheorghiță Zbăganu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Axioms - MDPI AG, 2012, 11(2022), 3, p 125 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:3, p 125 |
Links: |
---|
DOI / URN: |
10.3390/axioms11030125 |
---|
Katalog-ID: |
DOAJ047022884 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047022884 | ||
003 | DE-627 | ||
005 | 20240414140515.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/axioms11030125 |2 doi | |
035 | |a (DE-627)DOAJ047022884 | ||
035 | |a (DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Gheorghiță Zbăganu |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Semi-Group Property of the Perpendicular Bisector in a Normed Space |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. | ||
650 | 4 | |a normed space | |
650 | 4 | |a perpendicular bisector | |
650 | 4 | |a inner product | |
653 | 0 | |a Mathematics | |
773 | 0 | 8 | |i In |t Axioms |d MDPI AG, 2012 |g 11(2022), 3, p 125 |w (DE-627)718622030 |w (DE-600)2661511-3 |x 20751680 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:3, p 125 |
856 | 4 | 0 | |u https://doi.org/10.3390/axioms11030125 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1680/11/3/125 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1680 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 3, p 125 |
author_variant |
g z gz |
---|---|
matchkey_str |
article:20751680:2022----::nhsmgoprpryfhpredclrie |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.3390/axioms11030125 doi (DE-627)DOAJ047022884 (DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a DE-627 ger DE-627 rakwb eng QA1-939 Gheorghiță Zbăganu verfasserin aut On the Semi-Group Property of the Perpendicular Bisector in a Normed Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. normed space perpendicular bisector inner product Mathematics In Axioms MDPI AG, 2012 11(2022), 3, p 125 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:11 year:2022 number:3, p 125 https://doi.org/10.3390/axioms11030125 kostenfrei https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a kostenfrei https://www.mdpi.com/2075-1680/11/3/125 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 3, p 125 |
spelling |
10.3390/axioms11030125 doi (DE-627)DOAJ047022884 (DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a DE-627 ger DE-627 rakwb eng QA1-939 Gheorghiță Zbăganu verfasserin aut On the Semi-Group Property of the Perpendicular Bisector in a Normed Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. normed space perpendicular bisector inner product Mathematics In Axioms MDPI AG, 2012 11(2022), 3, p 125 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:11 year:2022 number:3, p 125 https://doi.org/10.3390/axioms11030125 kostenfrei https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a kostenfrei https://www.mdpi.com/2075-1680/11/3/125 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 3, p 125 |
allfields_unstemmed |
10.3390/axioms11030125 doi (DE-627)DOAJ047022884 (DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a DE-627 ger DE-627 rakwb eng QA1-939 Gheorghiță Zbăganu verfasserin aut On the Semi-Group Property of the Perpendicular Bisector in a Normed Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. normed space perpendicular bisector inner product Mathematics In Axioms MDPI AG, 2012 11(2022), 3, p 125 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:11 year:2022 number:3, p 125 https://doi.org/10.3390/axioms11030125 kostenfrei https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a kostenfrei https://www.mdpi.com/2075-1680/11/3/125 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 3, p 125 |
allfieldsGer |
10.3390/axioms11030125 doi (DE-627)DOAJ047022884 (DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a DE-627 ger DE-627 rakwb eng QA1-939 Gheorghiță Zbăganu verfasserin aut On the Semi-Group Property of the Perpendicular Bisector in a Normed Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. normed space perpendicular bisector inner product Mathematics In Axioms MDPI AG, 2012 11(2022), 3, p 125 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:11 year:2022 number:3, p 125 https://doi.org/10.3390/axioms11030125 kostenfrei https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a kostenfrei https://www.mdpi.com/2075-1680/11/3/125 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 3, p 125 |
allfieldsSound |
10.3390/axioms11030125 doi (DE-627)DOAJ047022884 (DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a DE-627 ger DE-627 rakwb eng QA1-939 Gheorghiță Zbăganu verfasserin aut On the Semi-Group Property of the Perpendicular Bisector in a Normed Space 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. normed space perpendicular bisector inner product Mathematics In Axioms MDPI AG, 2012 11(2022), 3, p 125 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:11 year:2022 number:3, p 125 https://doi.org/10.3390/axioms11030125 kostenfrei https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a kostenfrei https://www.mdpi.com/2075-1680/11/3/125 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 3, p 125 |
language |
English |
source |
In Axioms 11(2022), 3, p 125 volume:11 year:2022 number:3, p 125 |
sourceStr |
In Axioms 11(2022), 3, p 125 volume:11 year:2022 number:3, p 125 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
normed space perpendicular bisector inner product Mathematics |
isfreeaccess_bool |
true |
container_title |
Axioms |
authorswithroles_txt_mv |
Gheorghiță Zbăganu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718622030 |
id |
DOAJ047022884 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047022884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414140515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/axioms11030125</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047022884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gheorghiță Zbăganu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Semi-Group Property of the Perpendicular Bisector in a Normed Space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">normed space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perpendicular bisector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inner product</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Axioms</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2022), 3, p 125</subfield><subfield code="w">(DE-627)718622030</subfield><subfield code="w">(DE-600)2661511-3</subfield><subfield code="x">20751680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 125</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/axioms11030125</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1680/11/3/125</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1680</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 125</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Gheorghiță Zbăganu |
spellingShingle |
Gheorghiță Zbăganu misc QA1-939 misc normed space misc perpendicular bisector misc inner product misc Mathematics On the Semi-Group Property of the Perpendicular Bisector in a Normed Space |
authorStr |
Gheorghiță Zbăganu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718622030 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20751680 |
topic_title |
QA1-939 On the Semi-Group Property of the Perpendicular Bisector in a Normed Space normed space perpendicular bisector inner product |
topic |
misc QA1-939 misc normed space misc perpendicular bisector misc inner product misc Mathematics |
topic_unstemmed |
misc QA1-939 misc normed space misc perpendicular bisector misc inner product misc Mathematics |
topic_browse |
misc QA1-939 misc normed space misc perpendicular bisector misc inner product misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Axioms |
hierarchy_parent_id |
718622030 |
hierarchy_top_title |
Axioms |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718622030 (DE-600)2661511-3 |
title |
On the Semi-Group Property of the Perpendicular Bisector in a Normed Space |
ctrlnum |
(DE-627)DOAJ047022884 (DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a |
title_full |
On the Semi-Group Property of the Perpendicular Bisector in a Normed Space |
author_sort |
Gheorghiță Zbăganu |
journal |
Axioms |
journalStr |
Axioms |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Gheorghiță Zbăganu |
container_volume |
11 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Gheorghiță Zbăganu |
doi_str_mv |
10.3390/axioms11030125 |
title_sort |
on the semi-group property of the perpendicular bisector in a normed space |
callnumber |
QA1-939 |
title_auth |
On the Semi-Group Property of the Perpendicular Bisector in a Normed Space |
abstract |
Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. |
abstractGer |
Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. |
abstract_unstemmed |
Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 125 |
title_short |
On the Semi-Group Property of the Perpendicular Bisector in a Normed Space |
url |
https://doi.org/10.3390/axioms11030125 https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a https://www.mdpi.com/2075-1680/11/3/125 https://doaj.org/toc/2075-1680 |
remote_bool |
true |
ppnlink |
718622030 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/axioms11030125 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T23:42:22.011Z |
_version_ |
1803603297715617792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047022884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414140515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/axioms11030125</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047022884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e59c7b0ad6340688cb36888eba97f8a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gheorghiță Zbăganu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Semi-Group Property of the Perpendicular Bisector in a Normed Space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let (<i<X</i<,<i<d</i<) be a metric linear space and <i<a</i<∈<i<X.</i< The point <i<a</i< divides the space into three sets: <i<H<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x,a</i<)}, <i<M<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) = <i<d</i<(<i<x</i<,<i<a</i<)} and <i<L<sub<a</sub<</i< = {<i<x</i< ∈ <i<X</i<: <i<d</i<(0,<i<x</i<) < <i<d</i<(<i<x</i<,<i<a</i<)}. If the distance is generated by a norm, <i<H<sub<a</sub<</i< is called <i<the Leibnizian halfspace of a, M<sub<a</sub< is the perpendicular bisector of the segment</i< 0,<i<a</i< and <i<L<sub<a</sub<</i< is the remaining set <i<L<sub<a</sub< = X\</i<(<i<H<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<). It is known that the perpendicular bisector of the segment [0,<i<a</i<] is an affine subspace of <i<X</i< for all <i<a</i< ∈ <i<X</i< if, and only if, <i<X</i< is an inner product space, that is, if and only if the norm is generated by an inner product. In this case, it is also true that if <i<x,y</i< ∈ <i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<, then <i<x + y</i< ∈ <i<L<sub<a</sub<</i<∪ <i<M<sub<a</sub<</i<. Otherwise written, the set <i<L<sub<a</sub<</i<∪ <i<M</i<<sub<a</sub< is a semi-group with respect to addition. We investigate the problem: <i<for what kind of norms in X the pair</i< (<i<L<sub<a</sub<</i< ∪ <i<M<sub<a</sub<</i<,+) <i<is a semi-group for all a</i< ∈ <i<X</i<? In that case, we say that “<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula<<i<has the semi-group</i< property” or that “the norm <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property”. This is a threedimensional property, meaning that if all the three-dimensional subspaces of <i<X</i< have it, then <i<X</i< also has it. We prove that for two-dimensional spaces, (<i<L<sub<a</sub<</i<,+) is a semi-group for any norm, that <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mrow<<mo<(</mo<<mrow<<mi<X</mi<<mo<,</mo<<mrow<<mo<‖</mo<<mo<.</mo<<mo<‖</mo<</mrow<</mrow<<mo<)</mo<</mrow<</mrow<</semantics<</math<</inline-formula< has the semi-group property if, and only if, the norm is strictly convex, and, in higher dimensions, the property fails to be true even if the norm is strictly convex. Moreover, studying the <i<L<sup<p</sup<</i< norms in higher dimensions, we prove that the semi-group property holds if, and only if, <i<p = 2</i<. This fact leads us to the conjecture that in dimensions greater than three, the semi-group property holds if, and only if, <i<X</i< is an inner-product space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">normed space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perpendicular bisector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inner product</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Axioms</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2022), 3, p 125</subfield><subfield code="w">(DE-627)718622030</subfield><subfield code="w">(DE-600)2661511-3</subfield><subfield code="x">20751680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 125</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/axioms11030125</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e59c7b0ad6340688cb36888eba97f8a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1680/11/3/125</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1680</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 125</subfield></datafield></record></collection>
|
score |
7.4004107 |