Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis
Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design...
Ausführliche Beschreibung
Autor*in: |
Xia Bai [verfasserIn] Juliang Jin [verfasserIn] Shaowei Ning [verfasserIn] Chengguo Wu [verfasserIn] Yuliang Zhou [verfasserIn] Libing Zhang [verfasserIn] Yi Cui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
hydrological variable frequency analysis cloud transformation algorithm |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 13(2021), 18, p 3586 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:18, p 3586 |
Links: |
---|
DOI / URN: |
10.3390/rs13183586 |
---|
Katalog-ID: |
DOAJ047176474 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047176474 | ||
003 | DE-627 | ||
005 | 20240412141554.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs13183586 |2 doi | |
035 | |a (DE-627)DOAJ047176474 | ||
035 | |a (DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Xia Bai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. | ||
650 | 4 | |a hydrological variable frequency analysis | |
650 | 4 | |a cloud transformation algorithm | |
650 | 4 | |a empirical frequency | |
650 | 4 | |a Pearson type III frequency curve | |
650 | 4 | |a annual precipitation | |
650 | 4 | |a northern Anhui province | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Juliang Jin |e verfasserin |4 aut | |
700 | 0 | |a Shaowei Ning |e verfasserin |4 aut | |
700 | 0 | |a Chengguo Wu |e verfasserin |4 aut | |
700 | 0 | |a Yuliang Zhou |e verfasserin |4 aut | |
700 | 0 | |a Libing Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yi Cui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 13(2021), 18, p 3586 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:18, p 3586 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs13183586 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/13/18/3586 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 18, p 3586 |
author_variant |
x b xb j j jj s n sn c w cw y z yz l z lz y c yc |
---|---|
matchkey_str |
article:20724292:2021----::lutasomloihbsdoefryrlgclaib |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/rs13183586 doi (DE-627)DOAJ047176474 (DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349 DE-627 ger DE-627 rakwb eng Xia Bai verfasserin aut Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. hydrological variable frequency analysis cloud transformation algorithm empirical frequency Pearson type III frequency curve annual precipitation northern Anhui province Science Q Juliang Jin verfasserin aut Shaowei Ning verfasserin aut Chengguo Wu verfasserin aut Yuliang Zhou verfasserin aut Libing Zhang verfasserin aut Yi Cui verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 18, p 3586 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:18, p 3586 https://doi.org/10.3390/rs13183586 kostenfrei https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349 kostenfrei https://www.mdpi.com/2072-4292/13/18/3586 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 18, p 3586 |
spelling |
10.3390/rs13183586 doi (DE-627)DOAJ047176474 (DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349 DE-627 ger DE-627 rakwb eng Xia Bai verfasserin aut Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. hydrological variable frequency analysis cloud transformation algorithm empirical frequency Pearson type III frequency curve annual precipitation northern Anhui province Science Q Juliang Jin verfasserin aut Shaowei Ning verfasserin aut Chengguo Wu verfasserin aut Yuliang Zhou verfasserin aut Libing Zhang verfasserin aut Yi Cui verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 18, p 3586 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:18, p 3586 https://doi.org/10.3390/rs13183586 kostenfrei https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349 kostenfrei https://www.mdpi.com/2072-4292/13/18/3586 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 18, p 3586 |
allfields_unstemmed |
10.3390/rs13183586 doi (DE-627)DOAJ047176474 (DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349 DE-627 ger DE-627 rakwb eng Xia Bai verfasserin aut Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. hydrological variable frequency analysis cloud transformation algorithm empirical frequency Pearson type III frequency curve annual precipitation northern Anhui province Science Q Juliang Jin verfasserin aut Shaowei Ning verfasserin aut Chengguo Wu verfasserin aut Yuliang Zhou verfasserin aut Libing Zhang verfasserin aut Yi Cui verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 18, p 3586 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:18, p 3586 https://doi.org/10.3390/rs13183586 kostenfrei https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349 kostenfrei https://www.mdpi.com/2072-4292/13/18/3586 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 18, p 3586 |
allfieldsGer |
10.3390/rs13183586 doi (DE-627)DOAJ047176474 (DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349 DE-627 ger DE-627 rakwb eng Xia Bai verfasserin aut Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. hydrological variable frequency analysis cloud transformation algorithm empirical frequency Pearson type III frequency curve annual precipitation northern Anhui province Science Q Juliang Jin verfasserin aut Shaowei Ning verfasserin aut Chengguo Wu verfasserin aut Yuliang Zhou verfasserin aut Libing Zhang verfasserin aut Yi Cui verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 18, p 3586 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:18, p 3586 https://doi.org/10.3390/rs13183586 kostenfrei https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349 kostenfrei https://www.mdpi.com/2072-4292/13/18/3586 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 18, p 3586 |
allfieldsSound |
10.3390/rs13183586 doi (DE-627)DOAJ047176474 (DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349 DE-627 ger DE-627 rakwb eng Xia Bai verfasserin aut Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. hydrological variable frequency analysis cloud transformation algorithm empirical frequency Pearson type III frequency curve annual precipitation northern Anhui province Science Q Juliang Jin verfasserin aut Shaowei Ning verfasserin aut Chengguo Wu verfasserin aut Yuliang Zhou verfasserin aut Libing Zhang verfasserin aut Yi Cui verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 18, p 3586 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:18, p 3586 https://doi.org/10.3390/rs13183586 kostenfrei https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349 kostenfrei https://www.mdpi.com/2072-4292/13/18/3586 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 18, p 3586 |
language |
English |
source |
In Remote Sensing 13(2021), 18, p 3586 volume:13 year:2021 number:18, p 3586 |
sourceStr |
In Remote Sensing 13(2021), 18, p 3586 volume:13 year:2021 number:18, p 3586 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hydrological variable frequency analysis cloud transformation algorithm empirical frequency Pearson type III frequency curve annual precipitation northern Anhui province Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Xia Bai @@aut@@ Juliang Jin @@aut@@ Shaowei Ning @@aut@@ Chengguo Wu @@aut@@ Yuliang Zhou @@aut@@ Libing Zhang @@aut@@ Yi Cui @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ047176474 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047176474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412141554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13183586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047176474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xia Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrological variable frequency analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud transformation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">empirical frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearson type III frequency curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">annual precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">northern Anhui province</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juliang Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaowei Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengguo Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuliang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Libing Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 18, p 3586</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:18, p 3586</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13183586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/18/3586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">18, p 3586</subfield></datafield></record></collection>
|
author |
Xia Bai |
spellingShingle |
Xia Bai misc hydrological variable frequency analysis misc cloud transformation algorithm misc empirical frequency misc Pearson type III frequency curve misc annual precipitation misc northern Anhui province misc Science misc Q Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis |
authorStr |
Xia Bai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis hydrological variable frequency analysis cloud transformation algorithm empirical frequency Pearson type III frequency curve annual precipitation northern Anhui province |
topic |
misc hydrological variable frequency analysis misc cloud transformation algorithm misc empirical frequency misc Pearson type III frequency curve misc annual precipitation misc northern Anhui province misc Science misc Q |
topic_unstemmed |
misc hydrological variable frequency analysis misc cloud transformation algorithm misc empirical frequency misc Pearson type III frequency curve misc annual precipitation misc northern Anhui province misc Science misc Q |
topic_browse |
misc hydrological variable frequency analysis misc cloud transformation algorithm misc empirical frequency misc Pearson type III frequency curve misc annual precipitation misc northern Anhui province misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis |
ctrlnum |
(DE-627)DOAJ047176474 (DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349 |
title_full |
Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis |
author_sort |
Xia Bai |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Xia Bai Juliang Jin Shaowei Ning Chengguo Wu Yuliang Zhou Libing Zhang Yi Cui |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Xia Bai |
doi_str_mv |
10.3390/rs13183586 |
author2-role |
verfasserin |
title_sort |
cloud transform algorithm based model for hydrological variable frequency analysis |
title_auth |
Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis |
abstract |
Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. |
abstractGer |
Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. |
abstract_unstemmed |
Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
18, p 3586 |
title_short |
Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis |
url |
https://doi.org/10.3390/rs13183586 https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349 https://www.mdpi.com/2072-4292/13/18/3586 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Juliang Jin Shaowei Ning Chengguo Wu Yuliang Zhou Libing Zhang Yi Cui |
author2Str |
Juliang Jin Shaowei Ning Chengguo Wu Yuliang Zhou Libing Zhang Yi Cui |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs13183586 |
up_date |
2024-07-04T00:19:39.957Z |
_version_ |
1803605644367888384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047176474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412141554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13183586</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047176474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4717321f93cb431bb4e4e40dd0e1e349</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xia Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cloud Transform Algorithm Based Model for Hydrological Variable Frequency Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrological variable frequency analysis is a fundamental task for water resource management and water conservancy project design. Given the deficiencies of higher distribution features for the upper tail section of hydrological variable frequency curves and the corresponding safer resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson type III function-based curve fitting method, the normal cloud transform algorithm-based model for hydrological variable frequency analysis was proposed through estimation of the sample empirical frequency by the normal cloud transform algorithm, and determining the cumulative probability distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns, which is also the primary innovation of the paper. Its application result in northern Anhui province, China indicated that the varying trend of the cumulative probability distribution curve of annual precipitation derived from the proposed approach was basically consistent with the result obtained through the traditional empirical frequency formula. Furthermore, the upper tail section of the annual precipitation frequency curve derived from the cloud transform algorithm varied below the calculation result utilizing the traditional empirical frequency formula, which indicated that the annual precipitation frequency calculation result utilizing the cloud transform algorithm was more optimal compared to the results obtained by the traditional empirical frequency formula. Therefore, the proposed cloud transform algorithm-based model was reliable and effective for hydrological variable frequency analysis, which can be further applied in the related research field of hydrological process analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrological variable frequency analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud transformation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">empirical frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearson type III frequency curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">annual precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">northern Anhui province</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juliang Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaowei Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengguo Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuliang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Libing Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 18, p 3586</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:18, p 3586</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13183586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4717321f93cb431bb4e4e40dd0e1e349</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/18/3586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">18, p 3586</subfield></datafield></record></collection>
|
score |
7.4016733 |