Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning
A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal...
Ausführliche Beschreibung
Autor*in: |
Dongfang Zhao [verfasserIn] Jiafeng Liu [verfasserIn] Rui Wu [verfasserIn] Dansong Cheng [verfasserIn] Xianglong Tang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 55763-55769 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:55763-55769 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2913001 |
---|
Katalog-ID: |
DOAJ047339632 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047339632 | ||
003 | DE-627 | ||
005 | 20230308122725.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2913001 |2 doi | |
035 | |a (DE-627)DOAJ047339632 | ||
035 | |a (DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Dongfang Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. | ||
650 | 4 | |a Reinforcement learning | |
650 | 4 | |a information entropy | |
650 | 4 | |a optimistic sampling | |
650 | 4 | |a data efficiency | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jiafeng Liu |e verfasserin |4 aut | |
700 | 0 | |a Rui Wu |e verfasserin |4 aut | |
700 | 0 | |a Dansong Cheng |e verfasserin |4 aut | |
700 | 0 | |a Xianglong Tang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 55763-55769 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:55763-55769 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2913001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8698221/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 55763-55769 |
author_variant |
d z dz j l jl r w rw d c dc x t xt |
---|---|
matchkey_str |
article:21693536:2019----::piitcapigtaeyodtefcete |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2913001 doi (DE-627)DOAJ047339632 (DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208 DE-627 ger DE-627 rakwb eng TK1-9971 Dongfang Zhao verfasserin aut Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. Reinforcement learning information entropy optimistic sampling data efficiency Electrical engineering. Electronics. Nuclear engineering Jiafeng Liu verfasserin aut Rui Wu verfasserin aut Dansong Cheng verfasserin aut Xianglong Tang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 55763-55769 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:55763-55769 https://doi.org/10.1109/ACCESS.2019.2913001 kostenfrei https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208 kostenfrei https://ieeexplore.ieee.org/document/8698221/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 55763-55769 |
spelling |
10.1109/ACCESS.2019.2913001 doi (DE-627)DOAJ047339632 (DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208 DE-627 ger DE-627 rakwb eng TK1-9971 Dongfang Zhao verfasserin aut Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. Reinforcement learning information entropy optimistic sampling data efficiency Electrical engineering. Electronics. Nuclear engineering Jiafeng Liu verfasserin aut Rui Wu verfasserin aut Dansong Cheng verfasserin aut Xianglong Tang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 55763-55769 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:55763-55769 https://doi.org/10.1109/ACCESS.2019.2913001 kostenfrei https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208 kostenfrei https://ieeexplore.ieee.org/document/8698221/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 55763-55769 |
allfields_unstemmed |
10.1109/ACCESS.2019.2913001 doi (DE-627)DOAJ047339632 (DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208 DE-627 ger DE-627 rakwb eng TK1-9971 Dongfang Zhao verfasserin aut Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. Reinforcement learning information entropy optimistic sampling data efficiency Electrical engineering. Electronics. Nuclear engineering Jiafeng Liu verfasserin aut Rui Wu verfasserin aut Dansong Cheng verfasserin aut Xianglong Tang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 55763-55769 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:55763-55769 https://doi.org/10.1109/ACCESS.2019.2913001 kostenfrei https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208 kostenfrei https://ieeexplore.ieee.org/document/8698221/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 55763-55769 |
allfieldsGer |
10.1109/ACCESS.2019.2913001 doi (DE-627)DOAJ047339632 (DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208 DE-627 ger DE-627 rakwb eng TK1-9971 Dongfang Zhao verfasserin aut Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. Reinforcement learning information entropy optimistic sampling data efficiency Electrical engineering. Electronics. Nuclear engineering Jiafeng Liu verfasserin aut Rui Wu verfasserin aut Dansong Cheng verfasserin aut Xianglong Tang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 55763-55769 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:55763-55769 https://doi.org/10.1109/ACCESS.2019.2913001 kostenfrei https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208 kostenfrei https://ieeexplore.ieee.org/document/8698221/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 55763-55769 |
allfieldsSound |
10.1109/ACCESS.2019.2913001 doi (DE-627)DOAJ047339632 (DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208 DE-627 ger DE-627 rakwb eng TK1-9971 Dongfang Zhao verfasserin aut Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. Reinforcement learning information entropy optimistic sampling data efficiency Electrical engineering. Electronics. Nuclear engineering Jiafeng Liu verfasserin aut Rui Wu verfasserin aut Dansong Cheng verfasserin aut Xianglong Tang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 55763-55769 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:55763-55769 https://doi.org/10.1109/ACCESS.2019.2913001 kostenfrei https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208 kostenfrei https://ieeexplore.ieee.org/document/8698221/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 55763-55769 |
language |
English |
source |
In IEEE Access 7(2019), Seite 55763-55769 volume:7 year:2019 pages:55763-55769 |
sourceStr |
In IEEE Access 7(2019), Seite 55763-55769 volume:7 year:2019 pages:55763-55769 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Reinforcement learning information entropy optimistic sampling data efficiency Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Dongfang Zhao @@aut@@ Jiafeng Liu @@aut@@ Rui Wu @@aut@@ Dansong Cheng @@aut@@ Xianglong Tang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ047339632 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047339632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308122725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2913001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047339632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dongfang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimistic sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiafeng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dansong Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianglong Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 55763-55769</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:55763-55769</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2913001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8698221/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">55763-55769</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Dongfang Zhao |
spellingShingle |
Dongfang Zhao misc TK1-9971 misc Reinforcement learning misc information entropy misc optimistic sampling misc data efficiency misc Electrical engineering. Electronics. Nuclear engineering Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning |
authorStr |
Dongfang Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning Reinforcement learning information entropy optimistic sampling data efficiency |
topic |
misc TK1-9971 misc Reinforcement learning misc information entropy misc optimistic sampling misc data efficiency misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Reinforcement learning misc information entropy misc optimistic sampling misc data efficiency misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Reinforcement learning misc information entropy misc optimistic sampling misc data efficiency misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning |
ctrlnum |
(DE-627)DOAJ047339632 (DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208 |
title_full |
Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning |
author_sort |
Dongfang Zhao |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
55763 |
author_browse |
Dongfang Zhao Jiafeng Liu Rui Wu Dansong Cheng Xianglong Tang |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Dongfang Zhao |
doi_str_mv |
10.1109/ACCESS.2019.2913001 |
author2-role |
verfasserin |
title_sort |
optimistic sampling strategy for data-efficient reinforcement learning |
callnumber |
TK1-9971 |
title_auth |
Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning |
abstract |
A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. |
abstractGer |
A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. |
abstract_unstemmed |
A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning |
url |
https://doi.org/10.1109/ACCESS.2019.2913001 https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208 https://ieeexplore.ieee.org/document/8698221/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jiafeng Liu Rui Wu Dansong Cheng Xianglong Tang |
author2Str |
Jiafeng Liu Rui Wu Dansong Cheng Xianglong Tang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2913001 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:57:05.908Z |
_version_ |
1803607999418204160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047339632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308122725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2913001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047339632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ48d31e9b72f04b8d9172e2a4e4bab208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dongfang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimistic Sampling Strategy for Data-Efficient Reinforcement Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A high required number of interactions with the environment is one of the most important problems in reinforcement learning (RL). To deal with this problem, several data-efficient RL algorithms have been proposed and successfully applied in practice. Unlike previous research, that focuses on optimal policy evaluation and policy improvement stages, we actively select informative samples by leveraging entropy-based optimal sampling strategy, which takes the initial samples set into consideration. During the initial sampling process, information entropy is used to describe the potential samples. The agent selects the most informative samples using an optimization method. This way, the initial sample is more informative than in random and fixed strategy. Therefore, a more accurate initial dynamic model and policy can be learned. Thus, the proposed optimal sampling method guides the agent to search in a more informative region. The experimental results on standard benchmark problems involving a pendulum, cart pole, and cart double pendulum show that our optimal sampling strategy has a better performance in terms of data efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimistic sampling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiafeng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dansong Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianglong Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 55763-55769</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:55763-55769</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2913001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/48d31e9b72f04b8d9172e2a4e4bab208</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8698221/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">55763-55769</subfield></datafield></record></collection>
|
score |
7.400467 |