(Strong) Proper Connection in Some Digraphs
An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors...
Ausführliche Beschreibung
Autor*in: |
Yingbin Ma [verfasserIn] Kairui Nie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 69692-69697 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:69692-69697 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2918368 |
---|
Katalog-ID: |
DOAJ047359048 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047359048 | ||
003 | DE-627 | ||
005 | 20230308122855.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2918368 |2 doi | |
035 | |a (DE-627)DOAJ047359048 | ||
035 | |a (DE-599)DOAJ424fb45961834388b562e67f36814444 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Yingbin Ma |e verfasserin |4 aut | |
245 | 1 | 0 | |a (Strong) Proper Connection in Some Digraphs |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. | ||
650 | 4 | |a Proper path | |
650 | 4 | |a proper connection number | |
650 | 4 | |a proper geodesic | |
650 | 4 | |a strong proper connection number | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Kairui Nie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 69692-69697 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:69692-69697 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2918368 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/424fb45961834388b562e67f36814444 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8720152/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 69692-69697 |
author_variant |
y m ym k n kn |
---|---|
matchkey_str |
article:21693536:2019----::togrproncinno |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2918368 doi (DE-627)DOAJ047359048 (DE-599)DOAJ424fb45961834388b562e67f36814444 DE-627 ger DE-627 rakwb eng TK1-9971 Yingbin Ma verfasserin aut (Strong) Proper Connection in Some Digraphs 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. Proper path proper connection number proper geodesic strong proper connection number Electrical engineering. Electronics. Nuclear engineering Kairui Nie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 69692-69697 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:69692-69697 https://doi.org/10.1109/ACCESS.2019.2918368 kostenfrei https://doaj.org/article/424fb45961834388b562e67f36814444 kostenfrei https://ieeexplore.ieee.org/document/8720152/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 69692-69697 |
spelling |
10.1109/ACCESS.2019.2918368 doi (DE-627)DOAJ047359048 (DE-599)DOAJ424fb45961834388b562e67f36814444 DE-627 ger DE-627 rakwb eng TK1-9971 Yingbin Ma verfasserin aut (Strong) Proper Connection in Some Digraphs 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. Proper path proper connection number proper geodesic strong proper connection number Electrical engineering. Electronics. Nuclear engineering Kairui Nie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 69692-69697 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:69692-69697 https://doi.org/10.1109/ACCESS.2019.2918368 kostenfrei https://doaj.org/article/424fb45961834388b562e67f36814444 kostenfrei https://ieeexplore.ieee.org/document/8720152/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 69692-69697 |
allfields_unstemmed |
10.1109/ACCESS.2019.2918368 doi (DE-627)DOAJ047359048 (DE-599)DOAJ424fb45961834388b562e67f36814444 DE-627 ger DE-627 rakwb eng TK1-9971 Yingbin Ma verfasserin aut (Strong) Proper Connection in Some Digraphs 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. Proper path proper connection number proper geodesic strong proper connection number Electrical engineering. Electronics. Nuclear engineering Kairui Nie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 69692-69697 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:69692-69697 https://doi.org/10.1109/ACCESS.2019.2918368 kostenfrei https://doaj.org/article/424fb45961834388b562e67f36814444 kostenfrei https://ieeexplore.ieee.org/document/8720152/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 69692-69697 |
allfieldsGer |
10.1109/ACCESS.2019.2918368 doi (DE-627)DOAJ047359048 (DE-599)DOAJ424fb45961834388b562e67f36814444 DE-627 ger DE-627 rakwb eng TK1-9971 Yingbin Ma verfasserin aut (Strong) Proper Connection in Some Digraphs 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. Proper path proper connection number proper geodesic strong proper connection number Electrical engineering. Electronics. Nuclear engineering Kairui Nie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 69692-69697 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:69692-69697 https://doi.org/10.1109/ACCESS.2019.2918368 kostenfrei https://doaj.org/article/424fb45961834388b562e67f36814444 kostenfrei https://ieeexplore.ieee.org/document/8720152/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 69692-69697 |
allfieldsSound |
10.1109/ACCESS.2019.2918368 doi (DE-627)DOAJ047359048 (DE-599)DOAJ424fb45961834388b562e67f36814444 DE-627 ger DE-627 rakwb eng TK1-9971 Yingbin Ma verfasserin aut (Strong) Proper Connection in Some Digraphs 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. Proper path proper connection number proper geodesic strong proper connection number Electrical engineering. Electronics. Nuclear engineering Kairui Nie verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 69692-69697 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:69692-69697 https://doi.org/10.1109/ACCESS.2019.2918368 kostenfrei https://doaj.org/article/424fb45961834388b562e67f36814444 kostenfrei https://ieeexplore.ieee.org/document/8720152/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 69692-69697 |
language |
English |
source |
In IEEE Access 7(2019), Seite 69692-69697 volume:7 year:2019 pages:69692-69697 |
sourceStr |
In IEEE Access 7(2019), Seite 69692-69697 volume:7 year:2019 pages:69692-69697 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Proper path proper connection number proper geodesic strong proper connection number Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Yingbin Ma @@aut@@ Kairui Nie @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ047359048 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047359048</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308122855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2918368</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047359048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ424fb45961834388b562e67f36814444</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yingbin Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">(Strong) Proper Connection in Some Digraphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proper connection number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proper geodesic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong proper connection number</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kairui Nie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 69692-69697</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:69692-69697</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2918368</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/424fb45961834388b562e67f36814444</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8720152/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">69692-69697</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yingbin Ma |
spellingShingle |
Yingbin Ma misc TK1-9971 misc Proper path misc proper connection number misc proper geodesic misc strong proper connection number misc Electrical engineering. Electronics. Nuclear engineering (Strong) Proper Connection in Some Digraphs |
authorStr |
Yingbin Ma |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 (Strong) Proper Connection in Some Digraphs Proper path proper connection number proper geodesic strong proper connection number |
topic |
misc TK1-9971 misc Proper path misc proper connection number misc proper geodesic misc strong proper connection number misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Proper path misc proper connection number misc proper geodesic misc strong proper connection number misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Proper path misc proper connection number misc proper geodesic misc strong proper connection number misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
(Strong) Proper Connection in Some Digraphs |
ctrlnum |
(DE-627)DOAJ047359048 (DE-599)DOAJ424fb45961834388b562e67f36814444 |
title_full |
(Strong) Proper Connection in Some Digraphs |
author_sort |
Yingbin Ma |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
69692 |
author_browse |
Yingbin Ma Kairui Nie |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Yingbin Ma |
doi_str_mv |
10.1109/ACCESS.2019.2918368 |
author2-role |
verfasserin |
title_sort |
(strong) proper connection in some digraphs |
callnumber |
TK1-9971 |
title_auth |
(Strong) Proper Connection in Some Digraphs |
abstract |
An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. |
abstractGer |
An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. |
abstract_unstemmed |
An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
(Strong) Proper Connection in Some Digraphs |
url |
https://doi.org/10.1109/ACCESS.2019.2918368 https://doaj.org/article/424fb45961834388b562e67f36814444 https://ieeexplore.ieee.org/document/8720152/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Kairui Nie |
author2Str |
Kairui Nie |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2918368 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T01:01:31.658Z |
_version_ |
1803608278077276160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047359048</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308122855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2918368</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047359048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ424fb45961834388b562e67f36814444</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yingbin Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">(Strong) Proper Connection in Some Digraphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An arc-colored digraph D is proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj path whose adjacent arcs have different colors and a proper vj - vi path whose adjacent arcs have different colors. The proper connection number of a digraph D is the minimum number of colors needed to make D proper connected, denoted by spc(D). An arc-colored digraph D is strong proper connected if any pair of vertices vi, vj ε V(D) there is a proper vi - vj geodesic and a proper vj - vi geodesic. The strong proper connection number of D is the minimum number of colors required to color the arcs of D in order to make D strong proper connected, denoted by spc(D). In this paper, we will show some results on spc(D) and spc(D), mostly for the case of the (strong) proper connection numbers of cacti and circulant digraphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proper connection number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proper geodesic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong proper connection number</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kairui Nie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 69692-69697</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:69692-69697</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2918368</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/424fb45961834388b562e67f36814444</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8720152/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">69692-69697</subfield></datafield></record></collection>
|
score |
7.4025593 |