Advancing functional and translational microbiome research using meta-omics approaches
Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient...
Ausführliche Beschreibung
Autor*in: |
Xu Zhang [verfasserIn] Leyuan Li [verfasserIn] James Butcher [verfasserIn] Alain Stintzi [verfasserIn] Daniel Figeys [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Microbiome - BMC, 2013, 7(2019), 1, Seite 12 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; number:1 ; pages:12 |
Links: |
---|
DOI / URN: |
10.1186/s40168-019-0767-6 |
---|
Katalog-ID: |
DOAJ047368039 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047368039 | ||
003 | DE-627 | ||
005 | 20230308122942.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40168-019-0767-6 |2 doi | |
035 | |a (DE-627)DOAJ047368039 | ||
035 | |a (DE-599)DOAJ009212ad88d04f87a52f08699bd1e556 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR100-130 | |
100 | 0 | |a Xu Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Advancing functional and translational microbiome research using meta-omics approaches |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. | ||
650 | 4 | |a Drug-microbiome interactions | |
650 | 4 | |a Host-microbiome interactions | |
650 | 4 | |a Meta-omics | |
650 | 4 | |a Microbiome | |
650 | 4 | |a Microbiome assay | |
650 | 4 | |a Multi-omics | |
653 | 0 | |a Microbial ecology | |
700 | 0 | |a Leyuan Li |e verfasserin |4 aut | |
700 | 0 | |a James Butcher |e verfasserin |4 aut | |
700 | 0 | |a Alain Stintzi |e verfasserin |4 aut | |
700 | 0 | |a Daniel Figeys |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Microbiome |d BMC, 2013 |g 7(2019), 1, Seite 12 |w (DE-627)734146140 |w (DE-600)2697425-3 |x 20492618 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g number:1 |g pages:12 |
856 | 4 | 0 | |u https://doi.org/10.1186/s40168-019-0767-6 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/009212ad88d04f87a52f08699bd1e556 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s40168-019-0767-6 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2049-2618 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |e 1 |h 12 |
author_variant |
x z xz l l ll j b jb a s as d f df |
---|---|
matchkey_str |
article:20492618:2019----::dacnfntoaadrnltoamcoimrsacui |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QR |
publishDate |
2019 |
allfields |
10.1186/s40168-019-0767-6 doi (DE-627)DOAJ047368039 (DE-599)DOAJ009212ad88d04f87a52f08699bd1e556 DE-627 ger DE-627 rakwb eng QR100-130 Xu Zhang verfasserin aut Advancing functional and translational microbiome research using meta-omics approaches 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. Drug-microbiome interactions Host-microbiome interactions Meta-omics Microbiome Microbiome assay Multi-omics Microbial ecology Leyuan Li verfasserin aut James Butcher verfasserin aut Alain Stintzi verfasserin aut Daniel Figeys verfasserin aut In Microbiome BMC, 2013 7(2019), 1, Seite 12 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:7 year:2019 number:1 pages:12 https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/article/009212ad88d04f87a52f08699bd1e556 kostenfrei https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 12 |
spelling |
10.1186/s40168-019-0767-6 doi (DE-627)DOAJ047368039 (DE-599)DOAJ009212ad88d04f87a52f08699bd1e556 DE-627 ger DE-627 rakwb eng QR100-130 Xu Zhang verfasserin aut Advancing functional and translational microbiome research using meta-omics approaches 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. Drug-microbiome interactions Host-microbiome interactions Meta-omics Microbiome Microbiome assay Multi-omics Microbial ecology Leyuan Li verfasserin aut James Butcher verfasserin aut Alain Stintzi verfasserin aut Daniel Figeys verfasserin aut In Microbiome BMC, 2013 7(2019), 1, Seite 12 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:7 year:2019 number:1 pages:12 https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/article/009212ad88d04f87a52f08699bd1e556 kostenfrei https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 12 |
allfields_unstemmed |
10.1186/s40168-019-0767-6 doi (DE-627)DOAJ047368039 (DE-599)DOAJ009212ad88d04f87a52f08699bd1e556 DE-627 ger DE-627 rakwb eng QR100-130 Xu Zhang verfasserin aut Advancing functional and translational microbiome research using meta-omics approaches 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. Drug-microbiome interactions Host-microbiome interactions Meta-omics Microbiome Microbiome assay Multi-omics Microbial ecology Leyuan Li verfasserin aut James Butcher verfasserin aut Alain Stintzi verfasserin aut Daniel Figeys verfasserin aut In Microbiome BMC, 2013 7(2019), 1, Seite 12 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:7 year:2019 number:1 pages:12 https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/article/009212ad88d04f87a52f08699bd1e556 kostenfrei https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 12 |
allfieldsGer |
10.1186/s40168-019-0767-6 doi (DE-627)DOAJ047368039 (DE-599)DOAJ009212ad88d04f87a52f08699bd1e556 DE-627 ger DE-627 rakwb eng QR100-130 Xu Zhang verfasserin aut Advancing functional and translational microbiome research using meta-omics approaches 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. Drug-microbiome interactions Host-microbiome interactions Meta-omics Microbiome Microbiome assay Multi-omics Microbial ecology Leyuan Li verfasserin aut James Butcher verfasserin aut Alain Stintzi verfasserin aut Daniel Figeys verfasserin aut In Microbiome BMC, 2013 7(2019), 1, Seite 12 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:7 year:2019 number:1 pages:12 https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/article/009212ad88d04f87a52f08699bd1e556 kostenfrei https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 12 |
allfieldsSound |
10.1186/s40168-019-0767-6 doi (DE-627)DOAJ047368039 (DE-599)DOAJ009212ad88d04f87a52f08699bd1e556 DE-627 ger DE-627 rakwb eng QR100-130 Xu Zhang verfasserin aut Advancing functional and translational microbiome research using meta-omics approaches 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. Drug-microbiome interactions Host-microbiome interactions Meta-omics Microbiome Microbiome assay Multi-omics Microbial ecology Leyuan Li verfasserin aut James Butcher verfasserin aut Alain Stintzi verfasserin aut Daniel Figeys verfasserin aut In Microbiome BMC, 2013 7(2019), 1, Seite 12 (DE-627)734146140 (DE-600)2697425-3 20492618 nnns volume:7 year:2019 number:1 pages:12 https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/article/009212ad88d04f87a52f08699bd1e556 kostenfrei https://doi.org/10.1186/s40168-019-0767-6 kostenfrei https://doaj.org/toc/2049-2618 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 12 |
language |
English |
source |
In Microbiome 7(2019), 1, Seite 12 volume:7 year:2019 number:1 pages:12 |
sourceStr |
In Microbiome 7(2019), 1, Seite 12 volume:7 year:2019 number:1 pages:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Drug-microbiome interactions Host-microbiome interactions Meta-omics Microbiome Microbiome assay Multi-omics Microbial ecology |
isfreeaccess_bool |
true |
container_title |
Microbiome |
authorswithroles_txt_mv |
Xu Zhang @@aut@@ Leyuan Li @@aut@@ James Butcher @@aut@@ Alain Stintzi @@aut@@ Daniel Figeys @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
734146140 |
id |
DOAJ047368039 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047368039</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308122942.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40168-019-0767-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047368039</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ009212ad88d04f87a52f08699bd1e556</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR100-130</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advancing functional and translational microbiome research using meta-omics approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug-microbiome interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Host-microbiome interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-omics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiome assay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-omics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbial ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leyuan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James Butcher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alain Stintzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Figeys</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiome</subfield><subfield code="d">BMC, 2013</subfield><subfield code="g">7(2019), 1, Seite 12</subfield><subfield code="w">(DE-627)734146140</subfield><subfield code="w">(DE-600)2697425-3</subfield><subfield code="x">20492618</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40168-019-0767-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/009212ad88d04f87a52f08699bd1e556</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40168-019-0767-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2049-2618</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xu Zhang |
spellingShingle |
Xu Zhang misc QR100-130 misc Drug-microbiome interactions misc Host-microbiome interactions misc Meta-omics misc Microbiome misc Microbiome assay misc Multi-omics misc Microbial ecology Advancing functional and translational microbiome research using meta-omics approaches |
authorStr |
Xu Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)734146140 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR100-130 |
illustrated |
Not Illustrated |
issn |
20492618 |
topic_title |
QR100-130 Advancing functional and translational microbiome research using meta-omics approaches Drug-microbiome interactions Host-microbiome interactions Meta-omics Microbiome Microbiome assay Multi-omics |
topic |
misc QR100-130 misc Drug-microbiome interactions misc Host-microbiome interactions misc Meta-omics misc Microbiome misc Microbiome assay misc Multi-omics misc Microbial ecology |
topic_unstemmed |
misc QR100-130 misc Drug-microbiome interactions misc Host-microbiome interactions misc Meta-omics misc Microbiome misc Microbiome assay misc Multi-omics misc Microbial ecology |
topic_browse |
misc QR100-130 misc Drug-microbiome interactions misc Host-microbiome interactions misc Meta-omics misc Microbiome misc Microbiome assay misc Multi-omics misc Microbial ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microbiome |
hierarchy_parent_id |
734146140 |
hierarchy_top_title |
Microbiome |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)734146140 (DE-600)2697425-3 |
title |
Advancing functional and translational microbiome research using meta-omics approaches |
ctrlnum |
(DE-627)DOAJ047368039 (DE-599)DOAJ009212ad88d04f87a52f08699bd1e556 |
title_full |
Advancing functional and translational microbiome research using meta-omics approaches |
author_sort |
Xu Zhang |
journal |
Microbiome |
journalStr |
Microbiome |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
12 |
author_browse |
Xu Zhang Leyuan Li James Butcher Alain Stintzi Daniel Figeys |
container_volume |
7 |
class |
QR100-130 |
format_se |
Elektronische Aufsätze |
author-letter |
Xu Zhang |
doi_str_mv |
10.1186/s40168-019-0767-6 |
author2-role |
verfasserin |
title_sort |
advancing functional and translational microbiome research using meta-omics approaches |
callnumber |
QR100-130 |
title_auth |
Advancing functional and translational microbiome research using meta-omics approaches |
abstract |
Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. |
abstractGer |
Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. |
abstract_unstemmed |
Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Advancing functional and translational microbiome research using meta-omics approaches |
url |
https://doi.org/10.1186/s40168-019-0767-6 https://doaj.org/article/009212ad88d04f87a52f08699bd1e556 https://doaj.org/toc/2049-2618 |
remote_bool |
true |
author2 |
Leyuan Li James Butcher Alain Stintzi Daniel Figeys |
author2Str |
Leyuan Li James Butcher Alain Stintzi Daniel Figeys |
ppnlink |
734146140 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40168-019-0767-6 |
callnumber-a |
QR100-130 |
up_date |
2024-07-04T01:03:42.583Z |
_version_ |
1803608415361040385 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047368039</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308122942.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40168-019-0767-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047368039</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ009212ad88d04f87a52f08699bd1e556</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR100-130</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advancing functional and translational microbiome research using meta-omics approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The gut microbiome has emerged as an important factor affecting human health and disease. The recent development of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics, metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes, assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug-microbiome interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Host-microbiome interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-omics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiome assay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-omics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbial ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leyuan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James Butcher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alain Stintzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Figeys</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiome</subfield><subfield code="d">BMC, 2013</subfield><subfield code="g">7(2019), 1, Seite 12</subfield><subfield code="w">(DE-627)734146140</subfield><subfield code="w">(DE-600)2697425-3</subfield><subfield code="x">20492618</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40168-019-0767-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/009212ad88d04f87a52f08699bd1e556</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40168-019-0767-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2049-2618</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
score |
7.4018593 |