A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures
Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging...
Ausführliche Beschreibung
Autor*in: |
Tiehua Zhao [verfasserIn] Qihua Wu [verfasserIn] Feng Zhao [verfasserIn] Zhiming Xu [verfasserIn] Shunping Xiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 13(2021), 22, p 4626 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:22, p 4626 |
Links: |
---|
DOI / URN: |
10.3390/rs13224626 |
---|
Katalog-ID: |
DOAJ047382864 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047382864 | ||
003 | DE-627 | ||
005 | 20240412131151.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs13224626 |2 doi | |
035 | |a (DE-627)DOAJ047382864 | ||
035 | |a (DE-599)DOAJcc4091feba444df5b3534fc4be83521b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Tiehua Zhao |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. | ||
650 | 4 | |a compressed sensing | |
650 | 4 | |a joint reconstruction | |
650 | 4 | |a orthogonal coding aperture | |
650 | 4 | |a polarization radar imaging | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Qihua Wu |e verfasserin |4 aut | |
700 | 0 | |a Feng Zhao |e verfasserin |4 aut | |
700 | 0 | |a Zhiming Xu |e verfasserin |4 aut | |
700 | 0 | |a Shunping Xiao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 13(2021), 22, p 4626 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:22, p 4626 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs13224626 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cc4091feba444df5b3534fc4be83521b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/13/22/4626 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 22, p 4626 |
author_variant |
t z tz q w qw f z fz z x zx s x sx |
---|---|
matchkey_str |
article:20724292:2021----::flplrztordrmgrcntutomtowtoto |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/rs13224626 doi (DE-627)DOAJ047382864 (DE-599)DOAJcc4091feba444df5b3534fc4be83521b DE-627 ger DE-627 rakwb eng Tiehua Zhao verfasserin aut A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. compressed sensing joint reconstruction orthogonal coding aperture polarization radar imaging Science Q Qihua Wu verfasserin aut Feng Zhao verfasserin aut Zhiming Xu verfasserin aut Shunping Xiao verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 22, p 4626 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:22, p 4626 https://doi.org/10.3390/rs13224626 kostenfrei https://doaj.org/article/cc4091feba444df5b3534fc4be83521b kostenfrei https://www.mdpi.com/2072-4292/13/22/4626 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 22, p 4626 |
spelling |
10.3390/rs13224626 doi (DE-627)DOAJ047382864 (DE-599)DOAJcc4091feba444df5b3534fc4be83521b DE-627 ger DE-627 rakwb eng Tiehua Zhao verfasserin aut A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. compressed sensing joint reconstruction orthogonal coding aperture polarization radar imaging Science Q Qihua Wu verfasserin aut Feng Zhao verfasserin aut Zhiming Xu verfasserin aut Shunping Xiao verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 22, p 4626 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:22, p 4626 https://doi.org/10.3390/rs13224626 kostenfrei https://doaj.org/article/cc4091feba444df5b3534fc4be83521b kostenfrei https://www.mdpi.com/2072-4292/13/22/4626 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 22, p 4626 |
allfields_unstemmed |
10.3390/rs13224626 doi (DE-627)DOAJ047382864 (DE-599)DOAJcc4091feba444df5b3534fc4be83521b DE-627 ger DE-627 rakwb eng Tiehua Zhao verfasserin aut A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. compressed sensing joint reconstruction orthogonal coding aperture polarization radar imaging Science Q Qihua Wu verfasserin aut Feng Zhao verfasserin aut Zhiming Xu verfasserin aut Shunping Xiao verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 22, p 4626 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:22, p 4626 https://doi.org/10.3390/rs13224626 kostenfrei https://doaj.org/article/cc4091feba444df5b3534fc4be83521b kostenfrei https://www.mdpi.com/2072-4292/13/22/4626 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 22, p 4626 |
allfieldsGer |
10.3390/rs13224626 doi (DE-627)DOAJ047382864 (DE-599)DOAJcc4091feba444df5b3534fc4be83521b DE-627 ger DE-627 rakwb eng Tiehua Zhao verfasserin aut A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. compressed sensing joint reconstruction orthogonal coding aperture polarization radar imaging Science Q Qihua Wu verfasserin aut Feng Zhao verfasserin aut Zhiming Xu verfasserin aut Shunping Xiao verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 22, p 4626 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:22, p 4626 https://doi.org/10.3390/rs13224626 kostenfrei https://doaj.org/article/cc4091feba444df5b3534fc4be83521b kostenfrei https://www.mdpi.com/2072-4292/13/22/4626 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 22, p 4626 |
allfieldsSound |
10.3390/rs13224626 doi (DE-627)DOAJ047382864 (DE-599)DOAJcc4091feba444df5b3534fc4be83521b DE-627 ger DE-627 rakwb eng Tiehua Zhao verfasserin aut A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. compressed sensing joint reconstruction orthogonal coding aperture polarization radar imaging Science Q Qihua Wu verfasserin aut Feng Zhao verfasserin aut Zhiming Xu verfasserin aut Shunping Xiao verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 22, p 4626 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:22, p 4626 https://doi.org/10.3390/rs13224626 kostenfrei https://doaj.org/article/cc4091feba444df5b3534fc4be83521b kostenfrei https://www.mdpi.com/2072-4292/13/22/4626 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 22, p 4626 |
language |
English |
source |
In Remote Sensing 13(2021), 22, p 4626 volume:13 year:2021 number:22, p 4626 |
sourceStr |
In Remote Sensing 13(2021), 22, p 4626 volume:13 year:2021 number:22, p 4626 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
compressed sensing joint reconstruction orthogonal coding aperture polarization radar imaging Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Tiehua Zhao @@aut@@ Qihua Wu @@aut@@ Feng Zhao @@aut@@ Zhiming Xu @@aut@@ Shunping Xiao @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ047382864 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047382864</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412131151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13224626</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047382864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc4091feba444df5b3534fc4be83521b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tiehua Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressed sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">orthogonal coding aperture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization radar imaging</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qihua Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiming Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shunping Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 22, p 4626</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:22, p 4626</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13224626</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc4091feba444df5b3534fc4be83521b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/22/4626</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">22, p 4626</subfield></datafield></record></collection>
|
author |
Tiehua Zhao |
spellingShingle |
Tiehua Zhao misc compressed sensing misc joint reconstruction misc orthogonal coding aperture misc polarization radar imaging misc Science misc Q A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures |
authorStr |
Tiehua Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures compressed sensing joint reconstruction orthogonal coding aperture polarization radar imaging |
topic |
misc compressed sensing misc joint reconstruction misc orthogonal coding aperture misc polarization radar imaging misc Science misc Q |
topic_unstemmed |
misc compressed sensing misc joint reconstruction misc orthogonal coding aperture misc polarization radar imaging misc Science misc Q |
topic_browse |
misc compressed sensing misc joint reconstruction misc orthogonal coding aperture misc polarization radar imaging misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures |
ctrlnum |
(DE-627)DOAJ047382864 (DE-599)DOAJcc4091feba444df5b3534fc4be83521b |
title_full |
A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures |
author_sort |
Tiehua Zhao |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Tiehua Zhao Qihua Wu Feng Zhao Zhiming Xu Shunping Xiao |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Tiehua Zhao |
doi_str_mv |
10.3390/rs13224626 |
author2-role |
verfasserin |
title_sort |
full-polarization radar image reconstruction method with orthogonal coding apertures |
title_auth |
A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures |
abstract |
Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. |
abstractGer |
Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. |
abstract_unstemmed |
Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
22, p 4626 |
title_short |
A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures |
url |
https://doi.org/10.3390/rs13224626 https://doaj.org/article/cc4091feba444df5b3534fc4be83521b https://www.mdpi.com/2072-4292/13/22/4626 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Qihua Wu Feng Zhao Zhiming Xu Shunping Xiao |
author2Str |
Qihua Wu Feng Zhao Zhiming Xu Shunping Xiao |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs13224626 |
up_date |
2024-07-04T01:06:53.094Z |
_version_ |
1803608615127351296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047382864</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412131151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13224626</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047382864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc4091feba444df5b3534fc4be83521b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tiehua Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Imaging radar is widely applied in both military and civil fields, including remote sensing. In recent years, polarization information has attracted more and more attention in the imaging radar. The orthogonality between different channels is always the core problem for the full-polarization imaging radar. To solve this problem, an image reconstruction method using orthogonal coding apertures technique is proposed for full-polarization imaging radar in this paper. Firstly, the signal model of the orthogonal coding apertures is proposed. This model realizes the ideal time-domain orthogonality between switching two channels by the apertures with two trains of orthogonal codes. Then, a multichannel joint reconstruction method based on compressed sensing is proposed for the imaging processing, which is named the coded aperture simultaneous orthogonal matching pursuit (CAS-OMP) algorithm. The proposed algorithm combines the information of all polarization channels so as to ensure the consistency of the scattering point position obtained by each polarization channel and also improves the reconstruction accuracy. Finally, the simulation experiments using both the simple scaled model of the satellite and measured data of an unmanned aerial vehicle (UAV) are conducted, and the effectiveness of the proposed method is verified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressed sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">joint reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">orthogonal coding aperture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization radar imaging</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qihua Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiming Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shunping Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 22, p 4626</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:22, p 4626</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13224626</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc4091feba444df5b3534fc4be83521b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/22/4626</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">22, p 4626</subfield></datafield></record></collection>
|
score |
7.399967 |