Unsupervised SAR image segmentation based on kernel TMFs with belief propagation

The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Lu Gan [verfasserIn]

Xiaoming Liu [verfasserIn]

Ziwei Li [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2019

Schlagwörter:

synthetic aperture radar

speckle

maximum likelihood estimation

image segmentation

markov processes

radar imaging

simulated sar images

real sar images

triplet markov field model

synthetic aperture radar image segmentation

simple likelihood modelling

effective optimisation

unsupervised sar image segmentation algorithm

complex speckle noise statistical models

piecewise constant likelihood model

kernel mapped space

sar image data

higher dimension space

kernel function

max-product belief propagation algorithm

kernel tmf model

Übergeordnetes Werk:

In: The Journal of Engineering - Wiley, 2013, (2019)

Übergeordnetes Werk:

year:2019

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1049/joe.2019.0428

Katalog-ID:

DOAJ047421835

Nicht das Richtige dabei?

Schreiben Sie uns!