Unsupervised SAR image segmentation based on kernel TMFs with belief propagation
The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF...
Ausführliche Beschreibung
Autor*in: |
Lu Gan [verfasserIn] Xiaoming Liu [verfasserIn] Ziwei Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
synthetic aperture radar image segmentation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model |
---|
Übergeordnetes Werk: |
In: The Journal of Engineering - Wiley, 2013, (2019) |
---|---|
Übergeordnetes Werk: |
year:2019 |
Links: |
---|
DOI / URN: |
10.1049/joe.2019.0428 |
---|
Katalog-ID: |
DOAJ047421835 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047421835 | ||
003 | DE-627 | ||
005 | 20230308123354.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1049/joe.2019.0428 |2 doi | |
035 | |a (DE-627)DOAJ047421835 | ||
035 | |a (DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Lu Gan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unsupervised SAR image segmentation based on kernel TMFs with belief propagation |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. | ||
650 | 4 | |a synthetic aperture radar | |
650 | 4 | |a speckle | |
650 | 4 | |a maximum likelihood estimation | |
650 | 4 | |a image segmentation | |
650 | 4 | |a markov processes | |
650 | 4 | |a radar imaging | |
650 | 4 | |a simulated sar images | |
650 | 4 | |a real sar images | |
650 | 4 | |a triplet markov field model | |
650 | 4 | |a synthetic aperture radar image segmentation | |
650 | 4 | |a simple likelihood modelling | |
650 | 4 | |a effective optimisation | |
650 | 4 | |a unsupervised sar image segmentation algorithm | |
650 | 4 | |a complex speckle noise statistical models | |
650 | 4 | |a piecewise constant likelihood model | |
650 | 4 | |a kernel mapped space | |
650 | 4 | |a sar image data | |
650 | 4 | |a higher dimension space | |
650 | 4 | |a kernel function | |
650 | 4 | |a max-product belief propagation algorithm | |
650 | 4 | |a kernel tmf model | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Xiaoming Liu |e verfasserin |4 aut | |
700 | 0 | |a Ziwei Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Journal of Engineering |d Wiley, 2013 |g (2019) |w (DE-627)75682270X |w (DE-600)2727074-9 |x 20513305 |7 nnns |
773 | 1 | 8 | |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.1049/joe.2019.0428 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc |z kostenfrei |
856 | 4 | 0 | |u https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2051-3305 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2019 |
author_variant |
l g lg x l xl z l zl |
---|---|
matchkey_str |
article:20513305:2019----::nuevsdaiaeemnainaeokretfw |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.1049/joe.2019.0428 doi (DE-627)DOAJ047421835 (DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc DE-627 ger DE-627 rakwb eng TA1-2040 Lu Gan verfasserin aut Unsupervised SAR image segmentation based on kernel TMFs with belief propagation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. synthetic aperture radar speckle maximum likelihood estimation image segmentation markov processes radar imaging simulated sar images real sar images triplet markov field model synthetic aperture radar image segmentation simple likelihood modelling effective optimisation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model kernel mapped space sar image data higher dimension space kernel function max-product belief propagation algorithm kernel tmf model Engineering (General). Civil engineering (General) Xiaoming Liu verfasserin aut Ziwei Li verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2019.0428 kostenfrei https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
spelling |
10.1049/joe.2019.0428 doi (DE-627)DOAJ047421835 (DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc DE-627 ger DE-627 rakwb eng TA1-2040 Lu Gan verfasserin aut Unsupervised SAR image segmentation based on kernel TMFs with belief propagation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. synthetic aperture radar speckle maximum likelihood estimation image segmentation markov processes radar imaging simulated sar images real sar images triplet markov field model synthetic aperture radar image segmentation simple likelihood modelling effective optimisation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model kernel mapped space sar image data higher dimension space kernel function max-product belief propagation algorithm kernel tmf model Engineering (General). Civil engineering (General) Xiaoming Liu verfasserin aut Ziwei Li verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2019.0428 kostenfrei https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfields_unstemmed |
10.1049/joe.2019.0428 doi (DE-627)DOAJ047421835 (DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc DE-627 ger DE-627 rakwb eng TA1-2040 Lu Gan verfasserin aut Unsupervised SAR image segmentation based on kernel TMFs with belief propagation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. synthetic aperture radar speckle maximum likelihood estimation image segmentation markov processes radar imaging simulated sar images real sar images triplet markov field model synthetic aperture radar image segmentation simple likelihood modelling effective optimisation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model kernel mapped space sar image data higher dimension space kernel function max-product belief propagation algorithm kernel tmf model Engineering (General). Civil engineering (General) Xiaoming Liu verfasserin aut Ziwei Li verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2019.0428 kostenfrei https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsGer |
10.1049/joe.2019.0428 doi (DE-627)DOAJ047421835 (DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc DE-627 ger DE-627 rakwb eng TA1-2040 Lu Gan verfasserin aut Unsupervised SAR image segmentation based on kernel TMFs with belief propagation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. synthetic aperture radar speckle maximum likelihood estimation image segmentation markov processes radar imaging simulated sar images real sar images triplet markov field model synthetic aperture radar image segmentation simple likelihood modelling effective optimisation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model kernel mapped space sar image data higher dimension space kernel function max-product belief propagation algorithm kernel tmf model Engineering (General). Civil engineering (General) Xiaoming Liu verfasserin aut Ziwei Li verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2019.0428 kostenfrei https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsSound |
10.1049/joe.2019.0428 doi (DE-627)DOAJ047421835 (DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc DE-627 ger DE-627 rakwb eng TA1-2040 Lu Gan verfasserin aut Unsupervised SAR image segmentation based on kernel TMFs with belief propagation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. synthetic aperture radar speckle maximum likelihood estimation image segmentation markov processes radar imaging simulated sar images real sar images triplet markov field model synthetic aperture radar image segmentation simple likelihood modelling effective optimisation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model kernel mapped space sar image data higher dimension space kernel function max-product belief propagation algorithm kernel tmf model Engineering (General). Civil engineering (General) Xiaoming Liu verfasserin aut Ziwei Li verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2019.0428 kostenfrei https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
language |
English |
source |
In The Journal of Engineering (2019) year:2019 |
sourceStr |
In The Journal of Engineering (2019) year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
synthetic aperture radar speckle maximum likelihood estimation image segmentation markov processes radar imaging simulated sar images real sar images triplet markov field model synthetic aperture radar image segmentation simple likelihood modelling effective optimisation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model kernel mapped space sar image data higher dimension space kernel function max-product belief propagation algorithm kernel tmf model Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
The Journal of Engineering |
authorswithroles_txt_mv |
Lu Gan @@aut@@ Xiaoming Liu @@aut@@ Ziwei Li @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
75682270X |
id |
DOAJ047421835 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047421835</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308123354.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/joe.2019.0428</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047421835</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lu Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsupervised SAR image segmentation based on kernel TMFs with belief propagation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic aperture radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speckle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulated sar images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real sar images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">triplet markov field model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic aperture radar image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simple likelihood modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective optimisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unsupervised sar image segmentation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex speckle noise statistical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piecewise constant likelihood model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel mapped space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sar image data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher dimension space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">max-product belief propagation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel tmf model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoming Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziwei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Journal of Engineering</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)75682270X</subfield><subfield code="w">(DE-600)2727074-9</subfield><subfield code="x">20513305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/joe.2019.0428</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lu Gan |
spellingShingle |
Lu Gan misc TA1-2040 misc synthetic aperture radar misc speckle misc maximum likelihood estimation misc image segmentation misc markov processes misc radar imaging misc simulated sar images misc real sar images misc triplet markov field model misc synthetic aperture radar image segmentation misc simple likelihood modelling misc effective optimisation misc unsupervised sar image segmentation algorithm misc complex speckle noise statistical models misc piecewise constant likelihood model misc kernel mapped space misc sar image data misc higher dimension space misc kernel function misc max-product belief propagation algorithm misc kernel tmf model misc Engineering (General). Civil engineering (General) Unsupervised SAR image segmentation based on kernel TMFs with belief propagation |
authorStr |
Lu Gan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)75682270X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20513305 |
topic_title |
TA1-2040 Unsupervised SAR image segmentation based on kernel TMFs with belief propagation synthetic aperture radar speckle maximum likelihood estimation image segmentation markov processes radar imaging simulated sar images real sar images triplet markov field model synthetic aperture radar image segmentation simple likelihood modelling effective optimisation unsupervised sar image segmentation algorithm complex speckle noise statistical models piecewise constant likelihood model kernel mapped space sar image data higher dimension space kernel function max-product belief propagation algorithm kernel tmf model |
topic |
misc TA1-2040 misc synthetic aperture radar misc speckle misc maximum likelihood estimation misc image segmentation misc markov processes misc radar imaging misc simulated sar images misc real sar images misc triplet markov field model misc synthetic aperture radar image segmentation misc simple likelihood modelling misc effective optimisation misc unsupervised sar image segmentation algorithm misc complex speckle noise statistical models misc piecewise constant likelihood model misc kernel mapped space misc sar image data misc higher dimension space misc kernel function misc max-product belief propagation algorithm misc kernel tmf model misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc synthetic aperture radar misc speckle misc maximum likelihood estimation misc image segmentation misc markov processes misc radar imaging misc simulated sar images misc real sar images misc triplet markov field model misc synthetic aperture radar image segmentation misc simple likelihood modelling misc effective optimisation misc unsupervised sar image segmentation algorithm misc complex speckle noise statistical models misc piecewise constant likelihood model misc kernel mapped space misc sar image data misc higher dimension space misc kernel function misc max-product belief propagation algorithm misc kernel tmf model misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc synthetic aperture radar misc speckle misc maximum likelihood estimation misc image segmentation misc markov processes misc radar imaging misc simulated sar images misc real sar images misc triplet markov field model misc synthetic aperture radar image segmentation misc simple likelihood modelling misc effective optimisation misc unsupervised sar image segmentation algorithm misc complex speckle noise statistical models misc piecewise constant likelihood model misc kernel mapped space misc sar image data misc higher dimension space misc kernel function misc max-product belief propagation algorithm misc kernel tmf model misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Journal of Engineering |
hierarchy_parent_id |
75682270X |
hierarchy_top_title |
The Journal of Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)75682270X (DE-600)2727074-9 |
title |
Unsupervised SAR image segmentation based on kernel TMFs with belief propagation |
ctrlnum |
(DE-627)DOAJ047421835 (DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc |
title_full |
Unsupervised SAR image segmentation based on kernel TMFs with belief propagation |
author_sort |
Lu Gan |
journal |
The Journal of Engineering |
journalStr |
The Journal of Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Lu Gan Xiaoming Liu Ziwei Li |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Lu Gan |
doi_str_mv |
10.1049/joe.2019.0428 |
author2-role |
verfasserin |
title_sort |
unsupervised sar image segmentation based on kernel tmfs with belief propagation |
callnumber |
TA1-2040 |
title_auth |
Unsupervised SAR image segmentation based on kernel TMFs with belief propagation |
abstract |
The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. |
abstractGer |
The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. |
abstract_unstemmed |
The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Unsupervised SAR image segmentation based on kernel TMFs with belief propagation |
url |
https://doi.org/10.1049/joe.2019.0428 https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428 https://doaj.org/toc/2051-3305 |
remote_bool |
true |
author2 |
Xiaoming Liu Ziwei Li |
author2Str |
Xiaoming Liu Ziwei Li |
ppnlink |
75682270X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1049/joe.2019.0428 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T01:15:40.804Z |
_version_ |
1803609168472440832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047421835</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308123354.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/joe.2019.0428</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047421835</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a97b00fda83408e823520cbff6a31bc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lu Gan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsupervised SAR image segmentation based on kernel TMFs with belief propagation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The triplet Markov field (TMF) model has achieved promising results in synthetic aperture radar (SAR) image segmentation. Focusing on the simple likelihood modelling of an SAR image and the effective optimisation of the TMF model, an unsupervised SAR image segmentation algorithm based on kernel TMF with belief propagation is proposed in this study. Instead of complex speckle noise statistical models in a spatial domain, a piecewise constant likelihood model in the kernel mapped space is used in the TMF model by mapping the SAR image data into a higher dimension space via a kernel function. The max-product belief propagation algorithm is used to realise effective optimisation of the proposed kernel TMF model. Experiments on both simulated and real SAR images demonstrate the effectiveness of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic aperture radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speckle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulated sar images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real sar images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">triplet markov field model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthetic aperture radar image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simple likelihood modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective optimisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unsupervised sar image segmentation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex speckle noise statistical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piecewise constant likelihood model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel mapped space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sar image data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher dimension space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">max-product belief propagation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel tmf model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoming Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziwei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Journal of Engineering</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)75682270X</subfield><subfield code="w">(DE-600)2727074-9</subfield><subfield code="x">20513305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/joe.2019.0428</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a97b00fda83408e823520cbff6a31bc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/joe.2019.0428</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.400943 |