Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture
Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate h...
Ausführliche Beschreibung
Autor*in: |
Youping Gong [verfasserIn] Honghao Chen [verfasserIn] Wenxin Li [verfasserIn] Chuanping Zhou [verfasserIn] Rougang Zhou [verfasserIn] Haiming Zhao [verfasserIn] Huifeng Shao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials - MDPI AG, 2009, 15(2022), 6, p 2305 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:6, p 2305 |
Links: |
---|
DOI / URN: |
10.3390/ma15062305 |
---|
Katalog-ID: |
DOAJ047566086 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047566086 | ||
003 | DE-627 | ||
005 | 20240414135458.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ma15062305 |2 doi | |
035 | |a (DE-627)DOAJ047566086 | ||
035 | |a (DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH201-278.5 | |
050 | 0 | |a QC120-168.85 | |
100 | 0 | |a Youping Gong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. | ||
650 | 4 | |a sodium alginate | |
650 | 4 | |a heterogeneous gel spheres | |
650 | 4 | |a biological manufacturing | |
650 | 4 | |a three-dimensional cell culture | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Microscopy | |
653 | 0 | |a Descriptive and experimental mechanics | |
700 | 0 | |a Honghao Chen |e verfasserin |4 aut | |
700 | 0 | |a Wenxin Li |e verfasserin |4 aut | |
700 | 0 | |a Chuanping Zhou |e verfasserin |4 aut | |
700 | 0 | |a Rougang Zhou |e verfasserin |4 aut | |
700 | 0 | |a Haiming Zhao |e verfasserin |4 aut | |
700 | 0 | |a Huifeng Shao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials |d MDPI AG, 2009 |g 15(2022), 6, p 2305 |w (DE-627)595712649 |w (DE-600)2487261-1 |x 19961944 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:6, p 2305 |
856 | 4 | 0 | |u https://doi.org/10.3390/ma15062305 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1944/15/6/2305 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1944 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 6, p 2305 |
author_variant |
y g yg h c hc w l wl c z cz r z rz h z hz h s hs |
---|---|
matchkey_str |
article:19961944:2022----::rdetrnigliaeeeoemcopeefrhed |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/ma15062305 doi (DE-627)DOAJ047566086 (DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Youping Gong verfasserin aut Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. sodium alginate heterogeneous gel spheres biological manufacturing three-dimensional cell culture Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Honghao Chen verfasserin aut Wenxin Li verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Haiming Zhao verfasserin aut Huifeng Shao verfasserin aut In Materials MDPI AG, 2009 15(2022), 6, p 2305 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:6, p 2305 https://doi.org/10.3390/ma15062305 kostenfrei https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad kostenfrei https://www.mdpi.com/1996-1944/15/6/2305 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 6, p 2305 |
spelling |
10.3390/ma15062305 doi (DE-627)DOAJ047566086 (DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Youping Gong verfasserin aut Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. sodium alginate heterogeneous gel spheres biological manufacturing three-dimensional cell culture Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Honghao Chen verfasserin aut Wenxin Li verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Haiming Zhao verfasserin aut Huifeng Shao verfasserin aut In Materials MDPI AG, 2009 15(2022), 6, p 2305 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:6, p 2305 https://doi.org/10.3390/ma15062305 kostenfrei https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad kostenfrei https://www.mdpi.com/1996-1944/15/6/2305 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 6, p 2305 |
allfields_unstemmed |
10.3390/ma15062305 doi (DE-627)DOAJ047566086 (DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Youping Gong verfasserin aut Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. sodium alginate heterogeneous gel spheres biological manufacturing three-dimensional cell culture Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Honghao Chen verfasserin aut Wenxin Li verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Haiming Zhao verfasserin aut Huifeng Shao verfasserin aut In Materials MDPI AG, 2009 15(2022), 6, p 2305 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:6, p 2305 https://doi.org/10.3390/ma15062305 kostenfrei https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad kostenfrei https://www.mdpi.com/1996-1944/15/6/2305 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 6, p 2305 |
allfieldsGer |
10.3390/ma15062305 doi (DE-627)DOAJ047566086 (DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Youping Gong verfasserin aut Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. sodium alginate heterogeneous gel spheres biological manufacturing three-dimensional cell culture Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Honghao Chen verfasserin aut Wenxin Li verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Haiming Zhao verfasserin aut Huifeng Shao verfasserin aut In Materials MDPI AG, 2009 15(2022), 6, p 2305 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:6, p 2305 https://doi.org/10.3390/ma15062305 kostenfrei https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad kostenfrei https://www.mdpi.com/1996-1944/15/6/2305 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 6, p 2305 |
allfieldsSound |
10.3390/ma15062305 doi (DE-627)DOAJ047566086 (DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Youping Gong verfasserin aut Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. sodium alginate heterogeneous gel spheres biological manufacturing three-dimensional cell culture Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Honghao Chen verfasserin aut Wenxin Li verfasserin aut Chuanping Zhou verfasserin aut Rougang Zhou verfasserin aut Haiming Zhao verfasserin aut Huifeng Shao verfasserin aut In Materials MDPI AG, 2009 15(2022), 6, p 2305 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:6, p 2305 https://doi.org/10.3390/ma15062305 kostenfrei https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad kostenfrei https://www.mdpi.com/1996-1944/15/6/2305 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 6, p 2305 |
language |
English |
source |
In Materials 15(2022), 6, p 2305 volume:15 year:2022 number:6, p 2305 |
sourceStr |
In Materials 15(2022), 6, p 2305 volume:15 year:2022 number:6, p 2305 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
sodium alginate heterogeneous gel spheres biological manufacturing three-dimensional cell culture Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics |
isfreeaccess_bool |
true |
container_title |
Materials |
authorswithroles_txt_mv |
Youping Gong @@aut@@ Honghao Chen @@aut@@ Wenxin Li @@aut@@ Chuanping Zhou @@aut@@ Rougang Zhou @@aut@@ Haiming Zhao @@aut@@ Huifeng Shao @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
595712649 |
id |
DOAJ047566086 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047566086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414135458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma15062305</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047566086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Youping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium alginate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneous gel spheres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-dimensional cell culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Honghao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenxin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuanping Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rougang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiming Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huifeng Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2022), 6, p 2305</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 2305</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma15062305</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/15/6/2305</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 2305</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Youping Gong |
spellingShingle |
Youping Gong misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc sodium alginate misc heterogeneous gel spheres misc biological manufacturing misc three-dimensional cell culture misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture |
authorStr |
Youping Gong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)595712649 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
19961944 |
topic_title |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture sodium alginate heterogeneous gel spheres biological manufacturing three-dimensional cell culture |
topic |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc sodium alginate misc heterogeneous gel spheres misc biological manufacturing misc three-dimensional cell culture misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_unstemmed |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc sodium alginate misc heterogeneous gel spheres misc biological manufacturing misc three-dimensional cell culture misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_browse |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc sodium alginate misc heterogeneous gel spheres misc biological manufacturing misc three-dimensional cell culture misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials |
hierarchy_parent_id |
595712649 |
hierarchy_top_title |
Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)595712649 (DE-600)2487261-1 |
title |
Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture |
ctrlnum |
(DE-627)DOAJ047566086 (DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad |
title_full |
Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture |
author_sort |
Youping Gong |
journal |
Materials |
journalStr |
Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Youping Gong Honghao Chen Wenxin Li Chuanping Zhou Rougang Zhou Haiming Zhao Huifeng Shao |
container_volume |
15 |
class |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 |
format_se |
Elektronische Aufsätze |
author-letter |
Youping Gong |
doi_str_mv |
10.3390/ma15062305 |
author2-role |
verfasserin |
title_sort |
gradient printing alginate herero gel microspheres for three-dimensional cell culture |
callnumber |
TK1-9971 |
title_auth |
Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture |
abstract |
Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. |
abstractGer |
Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. |
abstract_unstemmed |
Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 2305 |
title_short |
Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture |
url |
https://doi.org/10.3390/ma15062305 https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad https://www.mdpi.com/1996-1944/15/6/2305 https://doaj.org/toc/1996-1944 |
remote_bool |
true |
author2 |
Honghao Chen Wenxin Li Chuanping Zhou Rougang Zhou Haiming Zhao Huifeng Shao |
author2Str |
Honghao Chen Wenxin Li Chuanping Zhou Rougang Zhou Haiming Zhao Huifeng Shao |
ppnlink |
595712649 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ma15062305 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T01:47:45.779Z |
_version_ |
1803611186955026432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047566086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414135458.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma15062305</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047566086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5ad054ffe8f24ff1aec92b3c160d03ad</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Youping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium alginate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneous gel spheres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biological manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-dimensional cell culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Honghao Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenxin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuanping Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rougang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiming Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huifeng Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2022), 6, p 2305</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 2305</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma15062305</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5ad054ffe8f24ff1aec92b3c160d03ad</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/15/6/2305</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 2305</subfield></datafield></record></collection>
|
score |
7.4011774 |