Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer
Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathwa...
Ausführliche Beschreibung
Autor*in: |
Fan Wang [verfasserIn] Shuqing Han [verfasserIn] Ji Yang [verfasserIn] Wenying Yan [verfasserIn] Guang Hu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cells - MDPI AG, 2012, 10(2021), 2, p 402 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:2, p 402 |
Links: |
---|
DOI / URN: |
10.3390/cells10020402 |
---|
Katalog-ID: |
DOAJ047636572 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047636572 | ||
003 | DE-627 | ||
005 | 20240414031614.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cells10020402 |2 doi | |
035 | |a (DE-627)DOAJ047636572 | ||
035 | |a (DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH573-671 | |
100 | 0 | |a Fan Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. | ||
650 | 4 | |a non-small-cell lung cancer | |
650 | 4 | |a protein-protein interactions | |
650 | 4 | |a random walk with restart | |
650 | 4 | |a functional modules | |
650 | 4 | |a signaling transduction | |
653 | 0 | |a Cytology | |
700 | 0 | |a Shuqing Han |e verfasserin |4 aut | |
700 | 0 | |a Ji Yang |e verfasserin |4 aut | |
700 | 0 | |a Wenying Yan |e verfasserin |4 aut | |
700 | 0 | |a Guang Hu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cells |d MDPI AG, 2012 |g 10(2021), 2, p 402 |w (DE-627)718622081 |w (DE-600)2661518-6 |x 20734409 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:2, p 402 |
856 | 4 | 0 | |u https://doi.org/10.3390/cells10020402 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4409/10/2/402 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4409 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 2, p 402 |
author_variant |
f w fw s h sh j y jy w y wy g h gh |
---|---|
matchkey_str |
article:20734409:2021----::nweggiecmuiyewraayirvashfntoamdlsncniaea |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.3390/cells10020402 doi (DE-627)DOAJ047636572 (DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5 DE-627 ger DE-627 rakwb eng QH573-671 Fan Wang verfasserin aut Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. non-small-cell lung cancer protein-protein interactions random walk with restart functional modules signaling transduction Cytology Shuqing Han verfasserin aut Ji Yang verfasserin aut Wenying Yan verfasserin aut Guang Hu verfasserin aut In Cells MDPI AG, 2012 10(2021), 2, p 402 (DE-627)718622081 (DE-600)2661518-6 20734409 nnns volume:10 year:2021 number:2, p 402 https://doi.org/10.3390/cells10020402 kostenfrei https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5 kostenfrei https://www.mdpi.com/2073-4409/10/2/402 kostenfrei https://doaj.org/toc/2073-4409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 2, p 402 |
spelling |
10.3390/cells10020402 doi (DE-627)DOAJ047636572 (DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5 DE-627 ger DE-627 rakwb eng QH573-671 Fan Wang verfasserin aut Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. non-small-cell lung cancer protein-protein interactions random walk with restart functional modules signaling transduction Cytology Shuqing Han verfasserin aut Ji Yang verfasserin aut Wenying Yan verfasserin aut Guang Hu verfasserin aut In Cells MDPI AG, 2012 10(2021), 2, p 402 (DE-627)718622081 (DE-600)2661518-6 20734409 nnns volume:10 year:2021 number:2, p 402 https://doi.org/10.3390/cells10020402 kostenfrei https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5 kostenfrei https://www.mdpi.com/2073-4409/10/2/402 kostenfrei https://doaj.org/toc/2073-4409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 2, p 402 |
allfields_unstemmed |
10.3390/cells10020402 doi (DE-627)DOAJ047636572 (DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5 DE-627 ger DE-627 rakwb eng QH573-671 Fan Wang verfasserin aut Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. non-small-cell lung cancer protein-protein interactions random walk with restart functional modules signaling transduction Cytology Shuqing Han verfasserin aut Ji Yang verfasserin aut Wenying Yan verfasserin aut Guang Hu verfasserin aut In Cells MDPI AG, 2012 10(2021), 2, p 402 (DE-627)718622081 (DE-600)2661518-6 20734409 nnns volume:10 year:2021 number:2, p 402 https://doi.org/10.3390/cells10020402 kostenfrei https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5 kostenfrei https://www.mdpi.com/2073-4409/10/2/402 kostenfrei https://doaj.org/toc/2073-4409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 2, p 402 |
allfieldsGer |
10.3390/cells10020402 doi (DE-627)DOAJ047636572 (DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5 DE-627 ger DE-627 rakwb eng QH573-671 Fan Wang verfasserin aut Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. non-small-cell lung cancer protein-protein interactions random walk with restart functional modules signaling transduction Cytology Shuqing Han verfasserin aut Ji Yang verfasserin aut Wenying Yan verfasserin aut Guang Hu verfasserin aut In Cells MDPI AG, 2012 10(2021), 2, p 402 (DE-627)718622081 (DE-600)2661518-6 20734409 nnns volume:10 year:2021 number:2, p 402 https://doi.org/10.3390/cells10020402 kostenfrei https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5 kostenfrei https://www.mdpi.com/2073-4409/10/2/402 kostenfrei https://doaj.org/toc/2073-4409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 2, p 402 |
allfieldsSound |
10.3390/cells10020402 doi (DE-627)DOAJ047636572 (DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5 DE-627 ger DE-627 rakwb eng QH573-671 Fan Wang verfasserin aut Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. non-small-cell lung cancer protein-protein interactions random walk with restart functional modules signaling transduction Cytology Shuqing Han verfasserin aut Ji Yang verfasserin aut Wenying Yan verfasserin aut Guang Hu verfasserin aut In Cells MDPI AG, 2012 10(2021), 2, p 402 (DE-627)718622081 (DE-600)2661518-6 20734409 nnns volume:10 year:2021 number:2, p 402 https://doi.org/10.3390/cells10020402 kostenfrei https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5 kostenfrei https://www.mdpi.com/2073-4409/10/2/402 kostenfrei https://doaj.org/toc/2073-4409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 2, p 402 |
language |
English |
source |
In Cells 10(2021), 2, p 402 volume:10 year:2021 number:2, p 402 |
sourceStr |
In Cells 10(2021), 2, p 402 volume:10 year:2021 number:2, p 402 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
non-small-cell lung cancer protein-protein interactions random walk with restart functional modules signaling transduction Cytology |
isfreeaccess_bool |
true |
container_title |
Cells |
authorswithroles_txt_mv |
Fan Wang @@aut@@ Shuqing Han @@aut@@ Ji Yang @@aut@@ Wenying Yan @@aut@@ Guang Hu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718622081 |
id |
DOAJ047636572 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047636572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414031614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cells10020402</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047636572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH573-671</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-small-cell lung cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protein-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random walk with restart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional modules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signaling transduction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Cytology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuqing Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ji Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenying Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cells</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2021), 2, p 402</subfield><subfield code="w">(DE-627)718622081</subfield><subfield code="w">(DE-600)2661518-6</subfield><subfield code="x">20734409</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 402</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cells10020402</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4409/10/2/402</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4409</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 402</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Fan Wang |
spellingShingle |
Fan Wang misc QH573-671 misc non-small-cell lung cancer misc protein-protein interactions misc random walk with restart misc functional modules misc signaling transduction misc Cytology Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer |
authorStr |
Fan Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718622081 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH573-671 |
illustrated |
Not Illustrated |
issn |
20734409 |
topic_title |
QH573-671 Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer non-small-cell lung cancer protein-protein interactions random walk with restart functional modules signaling transduction |
topic |
misc QH573-671 misc non-small-cell lung cancer misc protein-protein interactions misc random walk with restart misc functional modules misc signaling transduction misc Cytology |
topic_unstemmed |
misc QH573-671 misc non-small-cell lung cancer misc protein-protein interactions misc random walk with restart misc functional modules misc signaling transduction misc Cytology |
topic_browse |
misc QH573-671 misc non-small-cell lung cancer misc protein-protein interactions misc random walk with restart misc functional modules misc signaling transduction misc Cytology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cells |
hierarchy_parent_id |
718622081 |
hierarchy_top_title |
Cells |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718622081 (DE-600)2661518-6 |
title |
Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer |
ctrlnum |
(DE-627)DOAJ047636572 (DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5 |
title_full |
Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer |
author_sort |
Fan Wang |
journal |
Cells |
journalStr |
Cells |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Fan Wang Shuqing Han Ji Yang Wenying Yan Guang Hu |
container_volume |
10 |
class |
QH573-671 |
format_se |
Elektronische Aufsätze |
author-letter |
Fan Wang |
doi_str_mv |
10.3390/cells10020402 |
author2-role |
verfasserin |
title_sort |
knowledge-guided “community network” analysis reveals the functional modules and candidate targets in non-small-cell lung cancer |
callnumber |
QH573-671 |
title_auth |
Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer |
abstract |
Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. |
abstractGer |
Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. |
abstract_unstemmed |
Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 402 |
title_short |
Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer |
url |
https://doi.org/10.3390/cells10020402 https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5 https://www.mdpi.com/2073-4409/10/2/402 https://doaj.org/toc/2073-4409 |
remote_bool |
true |
author2 |
Shuqing Han Ji Yang Wenying Yan Guang Hu |
author2Str |
Shuqing Han Ji Yang Wenying Yan Guang Hu |
ppnlink |
718622081 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cells10020402 |
callnumber-a |
QH573-671 |
up_date |
2024-07-04T02:03:58.219Z |
_version_ |
1803612206631223296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047636572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414031614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cells10020402</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047636572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa68cb6b60deb4e7f8c4efbae85d6bae5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH573-671</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knowledge-Guided “Community Network” Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the <i<CCNB1</i<-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between <i<GNG11</i< and <i<CXCR2</i<, <i<CXCL3</i<, and <i<PPBP</i<. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-small-cell lung cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protein-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random walk with restart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional modules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signaling transduction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Cytology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuqing Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ji Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenying Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cells</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2021), 2, p 402</subfield><subfield code="w">(DE-627)718622081</subfield><subfield code="w">(DE-600)2661518-6</subfield><subfield code="x">20734409</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2, p 402</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cells10020402</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a68cb6b60deb4e7f8c4efbae85d6bae5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4409/10/2/402</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4409</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">2, p 402</subfield></datafield></record></collection>
|
score |
7.402237 |