Dynamic Color Transform Networks for Wheat Head Detection
Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deplo...
Ausführliche Beschreibung
Autor*in: |
Chengxin Liu [verfasserIn] Kewei Wang [verfasserIn] Hao Lu [verfasserIn] Zhiguo Cao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Plant Phenomics - American Association for the Advancement of Science (AAAS), 2019, (2022) |
---|---|
Übergeordnetes Werk: |
year:2022 |
Links: |
---|
DOI / URN: |
10.34133/2022/9818452 |
---|
Katalog-ID: |
DOAJ047692588 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047692588 | ||
003 | DE-627 | ||
005 | 20230502131700.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.34133/2022/9818452 |2 doi | |
035 | |a (DE-627)DOAJ047692588 | ||
035 | |a (DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SB1-1110 | |
050 | 0 | |a QH426-470 | |
050 | 0 | |a QK1-989 | |
100 | 0 | |a Chengxin Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic Color Transform Networks for Wheat Head Detection |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. | ||
653 | 0 | |a Plant culture | |
653 | 0 | |a Genetics | |
653 | 0 | |a Botany | |
700 | 0 | |a Kewei Wang |e verfasserin |4 aut | |
700 | 0 | |a Hao Lu |e verfasserin |4 aut | |
700 | 0 | |a Zhiguo Cao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plant Phenomics |d American Association for the Advancement of Science (AAAS), 2019 |g (2022) |w (DE-627)1662971729 |x 26436515 |7 nnns |
773 | 1 | 8 | |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.34133/2022/9818452 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.34133/2022/9818452 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2643-6515 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2022 |
author_variant |
c l cl k w kw h l hl z c zc |
---|---|
matchkey_str |
article:26436515:2022----::yaiclrrnfrntokfrha |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
SB |
publishDate |
2022 |
allfields |
10.34133/2022/9818452 doi (DE-627)DOAJ047692588 (DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Chengxin Liu verfasserin aut Dynamic Color Transform Networks for Wheat Head Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. Plant culture Genetics Botany Kewei Wang verfasserin aut Hao Lu verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2022) (DE-627)1662971729 26436515 nnns year:2022 https://doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2 kostenfrei http://dx.doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
spelling |
10.34133/2022/9818452 doi (DE-627)DOAJ047692588 (DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Chengxin Liu verfasserin aut Dynamic Color Transform Networks for Wheat Head Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. Plant culture Genetics Botany Kewei Wang verfasserin aut Hao Lu verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2022) (DE-627)1662971729 26436515 nnns year:2022 https://doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2 kostenfrei http://dx.doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfields_unstemmed |
10.34133/2022/9818452 doi (DE-627)DOAJ047692588 (DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Chengxin Liu verfasserin aut Dynamic Color Transform Networks for Wheat Head Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. Plant culture Genetics Botany Kewei Wang verfasserin aut Hao Lu verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2022) (DE-627)1662971729 26436515 nnns year:2022 https://doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2 kostenfrei http://dx.doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsGer |
10.34133/2022/9818452 doi (DE-627)DOAJ047692588 (DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Chengxin Liu verfasserin aut Dynamic Color Transform Networks for Wheat Head Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. Plant culture Genetics Botany Kewei Wang verfasserin aut Hao Lu verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2022) (DE-627)1662971729 26436515 nnns year:2022 https://doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2 kostenfrei http://dx.doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsSound |
10.34133/2022/9818452 doi (DE-627)DOAJ047692588 (DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2 DE-627 ger DE-627 rakwb eng SB1-1110 QH426-470 QK1-989 Chengxin Liu verfasserin aut Dynamic Color Transform Networks for Wheat Head Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. Plant culture Genetics Botany Kewei Wang verfasserin aut Hao Lu verfasserin aut Zhiguo Cao verfasserin aut In Plant Phenomics American Association for the Advancement of Science (AAAS), 2019 (2022) (DE-627)1662971729 26436515 nnns year:2022 https://doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2 kostenfrei http://dx.doi.org/10.34133/2022/9818452 kostenfrei https://doaj.org/toc/2643-6515 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
language |
English |
source |
In Plant Phenomics (2022) year:2022 |
sourceStr |
In Plant Phenomics (2022) year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Plant culture Genetics Botany |
isfreeaccess_bool |
true |
container_title |
Plant Phenomics |
authorswithroles_txt_mv |
Chengxin Liu @@aut@@ Kewei Wang @@aut@@ Hao Lu @@aut@@ Zhiguo Cao @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1662971729 |
id |
DOAJ047692588 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047692588</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.34133/2022/9818452</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047692588</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chengxin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Color Transform Networks for Wheat Head Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kewei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Phenomics</subfield><subfield code="d">American Association for the Advancement of Science (AAAS), 2019</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)1662971729</subfield><subfield code="x">26436515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.34133/2022/9818452</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.34133/2022/9818452</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2643-6515</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Chengxin Liu |
spellingShingle |
Chengxin Liu misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany Dynamic Color Transform Networks for Wheat Head Detection |
authorStr |
Chengxin Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1662971729 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SB1-1110 |
illustrated |
Not Illustrated |
issn |
26436515 |
topic_title |
SB1-1110 QH426-470 QK1-989 Dynamic Color Transform Networks for Wheat Head Detection |
topic |
misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany |
topic_unstemmed |
misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany |
topic_browse |
misc SB1-1110 misc QH426-470 misc QK1-989 misc Plant culture misc Genetics misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plant Phenomics |
hierarchy_parent_id |
1662971729 |
hierarchy_top_title |
Plant Phenomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1662971729 |
title |
Dynamic Color Transform Networks for Wheat Head Detection |
ctrlnum |
(DE-627)DOAJ047692588 (DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2 |
title_full |
Dynamic Color Transform Networks for Wheat Head Detection |
author_sort |
Chengxin Liu |
journal |
Plant Phenomics |
journalStr |
Plant Phenomics |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Chengxin Liu Kewei Wang Hao Lu Zhiguo Cao |
class |
SB1-1110 QH426-470 QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Chengxin Liu |
doi_str_mv |
10.34133/2022/9818452 |
author2-role |
verfasserin |
title_sort |
dynamic color transform networks for wheat head detection |
callnumber |
SB1-1110 |
title_auth |
Dynamic Color Transform Networks for Wheat Head Detection |
abstract |
Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. |
abstractGer |
Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. |
abstract_unstemmed |
Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Dynamic Color Transform Networks for Wheat Head Detection |
url |
https://doi.org/10.34133/2022/9818452 https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2 http://dx.doi.org/10.34133/2022/9818452 https://doaj.org/toc/2643-6515 |
remote_bool |
true |
author2 |
Kewei Wang Hao Lu Zhiguo Cao |
author2Str |
Kewei Wang Hao Lu Zhiguo Cao |
ppnlink |
1662971729 |
callnumber-subject |
SB - Plant Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.34133/2022/9818452 |
callnumber-a |
SB1-1110 |
up_date |
2024-07-03T13:33:45.146Z |
_version_ |
1803565007023112192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047692588</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.34133/2022/9818452</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047692588</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2673a1fd4f65420f92b182a3534170d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chengxin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Color Transform Networks for Wheat Head Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wheat head detection can measure wheat traits such as head density and head characteristics. Standard wheat breeding largely relies on manual observation to detect wheat heads, yielding a tedious and inefficient procedure. The emergence of affordable camera platforms provides opportunities for deploying computer vision (CV) algorithms in wheat head detection, enabling automated measurements of wheat traits. Accurate wheat head detection, however, is challenging due to the variability of observation circumstances and the uncertainty of wheat head appearances. In this work, we propose a simple but effective idea—dynamic color transform (DCT)—for accurate wheat head detection. This idea is based on an observation that modifying the color channel of an input image can significantly alleviate false negatives and therefore improve detection results. DCT follows a linear color transform and can be easily implemented as a dynamic network. A key property of DCT is that the transform parameters are data-dependent such that illumination variations can be corrected adaptively. The DCT network can be incorporated into any existing object detectors. Experimental results on the Global Wheat Detection Dataset (GWHD) 2021 show that DCT can achieve notable improvements with negligible overhead parameters. In addition, DCT plays an important role in our solution participating in the Global Wheat Challenge (GWC) 2021, where our solution ranks the first on the initial public leaderboard, with an Average Domain Accuracy (ADA) of 0.821, and obtains the runner-up reward on the final private testing set, with an ADA of 0.695.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kewei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Phenomics</subfield><subfield code="d">American Association for the Advancement of Science (AAAS), 2019</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)1662971729</subfield><subfield code="x">26436515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.34133/2022/9818452</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2673a1fd4f65420f92b182a3534170d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.34133/2022/9818452</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2643-6515</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.3984203 |