Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method
Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating t...
Ausführliche Beschreibung
Autor*in: |
Peng Huang, PhD [verfasserIn] Cheng T Lin, MD [verfasserIn] Yuliang Li, MS [verfasserIn] Martin C Tammemagi, ProfPhD [verfasserIn] Malcolm V Brock, ProfMD [verfasserIn] Sukhinder Atkar-Khattra, BSc [verfasserIn] Yanxun Xu, PhD [verfasserIn] Ping Hu, ScD [verfasserIn] John R Mayo, ProfMD [verfasserIn] Heidi Schmidt, ProfMD [verfasserIn] Michel Gingras, MD [verfasserIn] Sergio Pasian, MD [verfasserIn] Lori Stewart, MD [verfasserIn] Scott Tsai, MD [verfasserIn] Jean M Seely, MD [verfasserIn] Daria Manos, MD [verfasserIn] Paul Burrowes, MD [verfasserIn] Rick Bhatia, MD [verfasserIn] Ming-Sound Tsao, ProfMD [verfasserIn] Stephen Lam, ProfMD [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: The Lancet: Digital Health - Elsevier, 2019, 1(2019), 7, Seite e353-e362 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2019 ; number:7 ; pages:e353-e362 |
Links: |
---|
DOI / URN: |
10.1016/S2589-7500(19)30159-1 |
---|
Katalog-ID: |
DOAJ047746750 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047746750 | ||
003 | DE-627 | ||
005 | 20230502233930.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/S2589-7500(19)30159-1 |2 doi | |
035 | |a (DE-627)DOAJ047746750 | ||
035 | |a (DE-599)DOAJ96d0a4b41cf44df180c556597a54738b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
100 | 0 | |a Peng Huang, PhD |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. | ||
653 | 0 | |a Computer applications to medicine. Medical informatics | |
700 | 0 | |a Cheng T Lin, MD |e verfasserin |4 aut | |
700 | 0 | |a Yuliang Li, MS |e verfasserin |4 aut | |
700 | 0 | |a Martin C Tammemagi, ProfPhD |e verfasserin |4 aut | |
700 | 0 | |a Malcolm V Brock, ProfMD |e verfasserin |4 aut | |
700 | 0 | |a Sukhinder Atkar-Khattra, BSc |e verfasserin |4 aut | |
700 | 0 | |a Yanxun Xu, PhD |e verfasserin |4 aut | |
700 | 0 | |a Ping Hu, ScD |e verfasserin |4 aut | |
700 | 0 | |a John R Mayo, ProfMD |e verfasserin |4 aut | |
700 | 0 | |a Heidi Schmidt, ProfMD |e verfasserin |4 aut | |
700 | 0 | |a Michel Gingras, MD |e verfasserin |4 aut | |
700 | 0 | |a Sergio Pasian, MD |e verfasserin |4 aut | |
700 | 0 | |a Lori Stewart, MD |e verfasserin |4 aut | |
700 | 0 | |a Scott Tsai, MD |e verfasserin |4 aut | |
700 | 0 | |a Jean M Seely, MD |e verfasserin |4 aut | |
700 | 0 | |a Daria Manos, MD |e verfasserin |4 aut | |
700 | 0 | |a Paul Burrowes, MD |e verfasserin |4 aut | |
700 | 0 | |a Rick Bhatia, MD |e verfasserin |4 aut | |
700 | 0 | |a Ming-Sound Tsao, ProfMD |e verfasserin |4 aut | |
700 | 0 | |a Stephen Lam, ProfMD |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Lancet: Digital Health |d Elsevier, 2019 |g 1(2019), 7, Seite e353-e362 |w (DE-627)1665782404 |x 25897500 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2019 |g number:7 |g pages:e353-e362 |
856 | 4 | 0 | |u https://doi.org/10.1016/S2589-7500(19)30159-1 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/96d0a4b41cf44df180c556597a54738b |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2589750019301591 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2589-7500 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2019 |e 7 |h e353-e362 |
author_variant |
h p p hp hpp t l m c tlm tlmc l m y lm lmy c t p m ctp ctpm v b p m vbp vbpm a k b s akb akbs x p y xp xpy h s p hs hsp r m p j rmp rmpj s p h sp sph g m m gm gmm p m s pm pms s m l sm sml t m s tm tms m s m j msm msmj m m d mm mmd b m p bm bmp b m r bm bmr t p m s tpm tpms l p s lp lps |
---|---|
matchkey_str |
article:25897500:2019----::rdcinfugacriktolwpcennwtlwoettannadaiai |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
R |
publishDate |
2019 |
allfields |
10.1016/S2589-7500(19)30159-1 doi (DE-627)DOAJ047746750 (DE-599)DOAJ96d0a4b41cf44df180c556597a54738b DE-627 ger DE-627 rakwb eng R858-859.7 Peng Huang, PhD verfasserin aut Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. Computer applications to medicine. Medical informatics Cheng T Lin, MD verfasserin aut Yuliang Li, MS verfasserin aut Martin C Tammemagi, ProfPhD verfasserin aut Malcolm V Brock, ProfMD verfasserin aut Sukhinder Atkar-Khattra, BSc verfasserin aut Yanxun Xu, PhD verfasserin aut Ping Hu, ScD verfasserin aut John R Mayo, ProfMD verfasserin aut Heidi Schmidt, ProfMD verfasserin aut Michel Gingras, MD verfasserin aut Sergio Pasian, MD verfasserin aut Lori Stewart, MD verfasserin aut Scott Tsai, MD verfasserin aut Jean M Seely, MD verfasserin aut Daria Manos, MD verfasserin aut Paul Burrowes, MD verfasserin aut Rick Bhatia, MD verfasserin aut Ming-Sound Tsao, ProfMD verfasserin aut Stephen Lam, ProfMD verfasserin aut In The Lancet: Digital Health Elsevier, 2019 1(2019), 7, Seite e353-e362 (DE-627)1665782404 25897500 nnns volume:1 year:2019 number:7 pages:e353-e362 https://doi.org/10.1016/S2589-7500(19)30159-1 kostenfrei https://doaj.org/article/96d0a4b41cf44df180c556597a54738b kostenfrei http://www.sciencedirect.com/science/article/pii/S2589750019301591 kostenfrei https://doaj.org/toc/2589-7500 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 1 2019 7 e353-e362 |
spelling |
10.1016/S2589-7500(19)30159-1 doi (DE-627)DOAJ047746750 (DE-599)DOAJ96d0a4b41cf44df180c556597a54738b DE-627 ger DE-627 rakwb eng R858-859.7 Peng Huang, PhD verfasserin aut Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. Computer applications to medicine. Medical informatics Cheng T Lin, MD verfasserin aut Yuliang Li, MS verfasserin aut Martin C Tammemagi, ProfPhD verfasserin aut Malcolm V Brock, ProfMD verfasserin aut Sukhinder Atkar-Khattra, BSc verfasserin aut Yanxun Xu, PhD verfasserin aut Ping Hu, ScD verfasserin aut John R Mayo, ProfMD verfasserin aut Heidi Schmidt, ProfMD verfasserin aut Michel Gingras, MD verfasserin aut Sergio Pasian, MD verfasserin aut Lori Stewart, MD verfasserin aut Scott Tsai, MD verfasserin aut Jean M Seely, MD verfasserin aut Daria Manos, MD verfasserin aut Paul Burrowes, MD verfasserin aut Rick Bhatia, MD verfasserin aut Ming-Sound Tsao, ProfMD verfasserin aut Stephen Lam, ProfMD verfasserin aut In The Lancet: Digital Health Elsevier, 2019 1(2019), 7, Seite e353-e362 (DE-627)1665782404 25897500 nnns volume:1 year:2019 number:7 pages:e353-e362 https://doi.org/10.1016/S2589-7500(19)30159-1 kostenfrei https://doaj.org/article/96d0a4b41cf44df180c556597a54738b kostenfrei http://www.sciencedirect.com/science/article/pii/S2589750019301591 kostenfrei https://doaj.org/toc/2589-7500 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 1 2019 7 e353-e362 |
allfields_unstemmed |
10.1016/S2589-7500(19)30159-1 doi (DE-627)DOAJ047746750 (DE-599)DOAJ96d0a4b41cf44df180c556597a54738b DE-627 ger DE-627 rakwb eng R858-859.7 Peng Huang, PhD verfasserin aut Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. Computer applications to medicine. Medical informatics Cheng T Lin, MD verfasserin aut Yuliang Li, MS verfasserin aut Martin C Tammemagi, ProfPhD verfasserin aut Malcolm V Brock, ProfMD verfasserin aut Sukhinder Atkar-Khattra, BSc verfasserin aut Yanxun Xu, PhD verfasserin aut Ping Hu, ScD verfasserin aut John R Mayo, ProfMD verfasserin aut Heidi Schmidt, ProfMD verfasserin aut Michel Gingras, MD verfasserin aut Sergio Pasian, MD verfasserin aut Lori Stewart, MD verfasserin aut Scott Tsai, MD verfasserin aut Jean M Seely, MD verfasserin aut Daria Manos, MD verfasserin aut Paul Burrowes, MD verfasserin aut Rick Bhatia, MD verfasserin aut Ming-Sound Tsao, ProfMD verfasserin aut Stephen Lam, ProfMD verfasserin aut In The Lancet: Digital Health Elsevier, 2019 1(2019), 7, Seite e353-e362 (DE-627)1665782404 25897500 nnns volume:1 year:2019 number:7 pages:e353-e362 https://doi.org/10.1016/S2589-7500(19)30159-1 kostenfrei https://doaj.org/article/96d0a4b41cf44df180c556597a54738b kostenfrei http://www.sciencedirect.com/science/article/pii/S2589750019301591 kostenfrei https://doaj.org/toc/2589-7500 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 1 2019 7 e353-e362 |
allfieldsGer |
10.1016/S2589-7500(19)30159-1 doi (DE-627)DOAJ047746750 (DE-599)DOAJ96d0a4b41cf44df180c556597a54738b DE-627 ger DE-627 rakwb eng R858-859.7 Peng Huang, PhD verfasserin aut Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. Computer applications to medicine. Medical informatics Cheng T Lin, MD verfasserin aut Yuliang Li, MS verfasserin aut Martin C Tammemagi, ProfPhD verfasserin aut Malcolm V Brock, ProfMD verfasserin aut Sukhinder Atkar-Khattra, BSc verfasserin aut Yanxun Xu, PhD verfasserin aut Ping Hu, ScD verfasserin aut John R Mayo, ProfMD verfasserin aut Heidi Schmidt, ProfMD verfasserin aut Michel Gingras, MD verfasserin aut Sergio Pasian, MD verfasserin aut Lori Stewart, MD verfasserin aut Scott Tsai, MD verfasserin aut Jean M Seely, MD verfasserin aut Daria Manos, MD verfasserin aut Paul Burrowes, MD verfasserin aut Rick Bhatia, MD verfasserin aut Ming-Sound Tsao, ProfMD verfasserin aut Stephen Lam, ProfMD verfasserin aut In The Lancet: Digital Health Elsevier, 2019 1(2019), 7, Seite e353-e362 (DE-627)1665782404 25897500 nnns volume:1 year:2019 number:7 pages:e353-e362 https://doi.org/10.1016/S2589-7500(19)30159-1 kostenfrei https://doaj.org/article/96d0a4b41cf44df180c556597a54738b kostenfrei http://www.sciencedirect.com/science/article/pii/S2589750019301591 kostenfrei https://doaj.org/toc/2589-7500 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 1 2019 7 e353-e362 |
allfieldsSound |
10.1016/S2589-7500(19)30159-1 doi (DE-627)DOAJ047746750 (DE-599)DOAJ96d0a4b41cf44df180c556597a54738b DE-627 ger DE-627 rakwb eng R858-859.7 Peng Huang, PhD verfasserin aut Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. Computer applications to medicine. Medical informatics Cheng T Lin, MD verfasserin aut Yuliang Li, MS verfasserin aut Martin C Tammemagi, ProfPhD verfasserin aut Malcolm V Brock, ProfMD verfasserin aut Sukhinder Atkar-Khattra, BSc verfasserin aut Yanxun Xu, PhD verfasserin aut Ping Hu, ScD verfasserin aut John R Mayo, ProfMD verfasserin aut Heidi Schmidt, ProfMD verfasserin aut Michel Gingras, MD verfasserin aut Sergio Pasian, MD verfasserin aut Lori Stewart, MD verfasserin aut Scott Tsai, MD verfasserin aut Jean M Seely, MD verfasserin aut Daria Manos, MD verfasserin aut Paul Burrowes, MD verfasserin aut Rick Bhatia, MD verfasserin aut Ming-Sound Tsao, ProfMD verfasserin aut Stephen Lam, ProfMD verfasserin aut In The Lancet: Digital Health Elsevier, 2019 1(2019), 7, Seite e353-e362 (DE-627)1665782404 25897500 nnns volume:1 year:2019 number:7 pages:e353-e362 https://doi.org/10.1016/S2589-7500(19)30159-1 kostenfrei https://doaj.org/article/96d0a4b41cf44df180c556597a54738b kostenfrei http://www.sciencedirect.com/science/article/pii/S2589750019301591 kostenfrei https://doaj.org/toc/2589-7500 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 1 2019 7 e353-e362 |
language |
English |
source |
In The Lancet: Digital Health 1(2019), 7, Seite e353-e362 volume:1 year:2019 number:7 pages:e353-e362 |
sourceStr |
In The Lancet: Digital Health 1(2019), 7, Seite e353-e362 volume:1 year:2019 number:7 pages:e353-e362 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computer applications to medicine. Medical informatics |
isfreeaccess_bool |
true |
container_title |
The Lancet: Digital Health |
authorswithroles_txt_mv |
Peng Huang, PhD @@aut@@ Cheng T Lin, MD @@aut@@ Yuliang Li, MS @@aut@@ Martin C Tammemagi, ProfPhD @@aut@@ Malcolm V Brock, ProfMD @@aut@@ Sukhinder Atkar-Khattra, BSc @@aut@@ Yanxun Xu, PhD @@aut@@ Ping Hu, ScD @@aut@@ John R Mayo, ProfMD @@aut@@ Heidi Schmidt, ProfMD @@aut@@ Michel Gingras, MD @@aut@@ Sergio Pasian, MD @@aut@@ Lori Stewart, MD @@aut@@ Scott Tsai, MD @@aut@@ Jean M Seely, MD @@aut@@ Daria Manos, MD @@aut@@ Paul Burrowes, MD @@aut@@ Rick Bhatia, MD @@aut@@ Ming-Sound Tsao, ProfMD @@aut@@ Stephen Lam, ProfMD @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
1665782404 |
id |
DOAJ047746750 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047746750</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502233930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S2589-7500(19)30159-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047746750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ96d0a4b41cf44df180c556597a54738b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Huang, PhD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng T Lin, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuliang Li, MS</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin C Tammemagi, ProfPhD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malcolm V Brock, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sukhinder Atkar-Khattra, BSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanxun Xu, PhD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Hu, ScD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John R Mayo, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heidi Schmidt, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michel Gingras, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergio Pasian, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lori Stewart, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Scott Tsai, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jean M Seely, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daria Manos, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Burrowes, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rick Bhatia, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming-Sound Tsao, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephen Lam, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Lancet: Digital Health</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">1(2019), 7, Seite e353-e362</subfield><subfield code="w">(DE-627)1665782404</subfield><subfield code="x">25897500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:e353-e362</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S2589-7500(19)30159-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/96d0a4b41cf44df180c556597a54738b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589750019301591</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-7500</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="h">e353-e362</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Peng Huang, PhD |
spellingShingle |
Peng Huang, PhD misc R858-859.7 misc Computer applications to medicine. Medical informatics Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method |
authorStr |
Peng Huang, PhD |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1665782404 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
25897500 |
topic_title |
R858-859.7 Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method |
topic |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
topic_unstemmed |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
topic_browse |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Lancet: Digital Health |
hierarchy_parent_id |
1665782404 |
hierarchy_top_title |
The Lancet: Digital Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1665782404 |
title |
Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method |
ctrlnum |
(DE-627)DOAJ047746750 (DE-599)DOAJ96d0a4b41cf44df180c556597a54738b |
title_full |
Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method |
author_sort |
Peng Huang, PhD |
journal |
The Lancet: Digital Health |
journalStr |
The Lancet: Digital Health |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Peng Huang, PhD Cheng T Lin, MD Yuliang Li, MS Martin C Tammemagi, ProfPhD Malcolm V Brock, ProfMD Sukhinder Atkar-Khattra, BSc Yanxun Xu, PhD Ping Hu, ScD John R Mayo, ProfMD Heidi Schmidt, ProfMD Michel Gingras, MD Sergio Pasian, MD Lori Stewart, MD Scott Tsai, MD Jean M Seely, MD Daria Manos, MD Paul Burrowes, MD Rick Bhatia, MD Ming-Sound Tsao, ProfMD Stephen Lam, ProfMD |
container_volume |
1 |
class |
R858-859.7 |
format_se |
Elektronische Aufsätze |
author-letter |
Peng Huang, PhD |
doi_str_mv |
10.1016/S2589-7500(19)30159-1 |
author2-role |
verfasserin |
title_sort |
prediction of lung cancer risk at follow-up screening with low-dose ct: a training and validation study of a deep learning method |
callnumber |
R858-859.7 |
title_auth |
Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method |
abstract |
Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. |
abstractGer |
Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. |
abstract_unstemmed |
Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method |
url |
https://doi.org/10.1016/S2589-7500(19)30159-1 https://doaj.org/article/96d0a4b41cf44df180c556597a54738b http://www.sciencedirect.com/science/article/pii/S2589750019301591 https://doaj.org/toc/2589-7500 |
remote_bool |
true |
author2 |
Cheng T Lin, MD Yuliang Li, MS Martin C Tammemagi, ProfPhD Malcolm V Brock, ProfMD Sukhinder Atkar-Khattra, BSc Yanxun Xu, PhD Ping Hu, ScD John R Mayo, ProfMD Heidi Schmidt, ProfMD Michel Gingras, MD Sergio Pasian, MD Lori Stewart, MD Scott Tsai, MD Jean M Seely, MD Daria Manos, MD Paul Burrowes, MD Rick Bhatia, MD Ming-Sound Tsao, ProfMD Stephen Lam, ProfMD |
author2Str |
Cheng T Lin, MD Yuliang Li, MS Martin C Tammemagi, ProfPhD Malcolm V Brock, ProfMD Sukhinder Atkar-Khattra, BSc Yanxun Xu, PhD Ping Hu, ScD John R Mayo, ProfMD Heidi Schmidt, ProfMD Michel Gingras, MD Sergio Pasian, MD Lori Stewart, MD Scott Tsai, MD Jean M Seely, MD Daria Manos, MD Paul Burrowes, MD Rick Bhatia, MD Ming-Sound Tsao, ProfMD Stephen Lam, ProfMD |
ppnlink |
1665782404 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/S2589-7500(19)30159-1 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T13:53:50.626Z |
_version_ |
1803566271041634305 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047746750</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502233930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S2589-7500(19)30159-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047746750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ96d0a4b41cf44df180c556597a54738b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Huang, PhD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: Background: Current lung cancer screening guidelines use either mean diameter, volume, or density of the largest lung nodule on the previous CT scan or appearance of a new nodule to ascertain the timing of the next CT scan. We aimed to develop an accurate screening protocol by estimating the 3-year lung cancer risk after two screening CT scans using deep learning of radiologists' CT readings and other universally available clinical information. Methods: A deep learning algorithm (referred to as DeepLR) was developed using data from participants who had received at least two CT screening scans up to 2 years apart in the National Lung Screening Trial (NLST; training cohort). Double-blinded validation was done using data from participants in the Pan-Canadian Early Detection of Lung Cancer (PanCan) study (validation cohort). The primary analysis was to compare accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years, and 3 years with the Lung CT Screening Reporting & Data System (Lung-RADS) and volume doubling time, using time-dependent area under the receiver operating characteristic curve (AUC) analysis. Findings: The training cohort consisted of 25 097 participants from NLST and the validation cohort comprised 2294 individuals from PanCan. In the validation cohort, DeepLR showed good discrimination, with 1-year, 2-year, and 3-year time-dependent AUC values for cancer diagnosis of 0·968 (SD 0·013), 0·946 (0·013), and 0·899 (0·017), respectively. Among individuals deemed high risk by DeepLR, 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1 year, 2 years, and 3 years, respectively, after the second screening CT scan were identified. Furthermore, individuals with high DeepLR scores had a significantly higher risk of mortality (hazard ratio 16·07, 95% CI 10·15–25·44; p<0·0001) among people with high scores on Lung-RADS. Interpretation: DeepLR recognises patterns in both temporal and spatial changes and synergy among changes in nodule and non-nodule features. DeepLR scores could be used to accurately guide clinical management after the next scheduled repeat screening CT scan. Funding: Allegheny Health Network, Johns Hopkins University, Terry Fox Research Institute, and British Columbia Cancer Foundation.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng T Lin, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuliang Li, MS</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin C Tammemagi, ProfPhD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malcolm V Brock, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sukhinder Atkar-Khattra, BSc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanxun Xu, PhD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Hu, ScD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John R Mayo, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heidi Schmidt, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michel Gingras, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergio Pasian, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lori Stewart, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Scott Tsai, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jean M Seely, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daria Manos, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Burrowes, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rick Bhatia, MD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming-Sound Tsao, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephen Lam, ProfMD</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Lancet: Digital Health</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">1(2019), 7, Seite e353-e362</subfield><subfield code="w">(DE-627)1665782404</subfield><subfield code="x">25897500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:e353-e362</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S2589-7500(19)30159-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/96d0a4b41cf44df180c556597a54738b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589750019301591</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-7500</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="h">e353-e362</subfield></datafield></record></collection>
|
score |
7.402011 |