Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean
Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic b...
Ausführliche Beschreibung
Autor*in: |
Xiaoxia Cai [verfasserIn] Yanpei Zhuang [verfasserIn] Hongliang Li [verfasserIn] Jing Xu [verfasserIn] Haiyan Jin [verfasserIn] Jianfang Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Marine Science and Engineering - MDPI AG, 2014, 10(2022), 3, p 352 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:3, p 352 |
Links: |
---|
DOI / URN: |
10.3390/jmse10030352 |
---|
Katalog-ID: |
DOAJ04779576X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04779576X | ||
003 | DE-627 | ||
005 | 20240414174038.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jmse10030352 |2 doi | |
035 | |a (DE-627)DOAJ04779576X | ||
035 | |a (DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a VM1-989 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Xiaoxia Cai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. | ||
650 | 4 | |a colored DOM | |
650 | 4 | |a marine carbon cycle | |
650 | 4 | |a Arctic Ocean | |
650 | 4 | |a ice melt | |
650 | 4 | |a Pacific water inflow | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Yanpei Zhuang |e verfasserin |4 aut | |
700 | 0 | |a Hongliang Li |e verfasserin |4 aut | |
700 | 0 | |a Jing Xu |e verfasserin |4 aut | |
700 | 0 | |a Haiyan Jin |e verfasserin |4 aut | |
700 | 0 | |a Jianfang Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Marine Science and Engineering |d MDPI AG, 2014 |g 10(2022), 3, p 352 |w (DE-627)771274181 |w (DE-600)2738390-8 |x 20771312 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:3, p 352 |
856 | 4 | 0 | |u https://doi.org/10.3390/jmse10030352 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-1312/10/3/352 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-1312 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 3, p 352 |
author_variant |
x c xc y z yz h l hl j x jx h j hj j c jc |
---|---|
matchkey_str |
article:20771312:2022----::ptadsrbtooclrdisleogncatrnh |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
VM |
publishDate |
2022 |
allfields |
10.3390/jmse10030352 doi (DE-627)DOAJ04779576X (DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoxia Cai verfasserin aut Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. colored DOM marine carbon cycle Arctic Ocean ice melt Pacific water inflow Naval architecture. Shipbuilding. Marine engineering Oceanography Yanpei Zhuang verfasserin aut Hongliang Li verfasserin aut Jing Xu verfasserin aut Haiyan Jin verfasserin aut Jianfang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 3, p 352 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:3, p 352 https://doi.org/10.3390/jmse10030352 kostenfrei https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3 kostenfrei https://www.mdpi.com/2077-1312/10/3/352 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3, p 352 |
spelling |
10.3390/jmse10030352 doi (DE-627)DOAJ04779576X (DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoxia Cai verfasserin aut Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. colored DOM marine carbon cycle Arctic Ocean ice melt Pacific water inflow Naval architecture. Shipbuilding. Marine engineering Oceanography Yanpei Zhuang verfasserin aut Hongliang Li verfasserin aut Jing Xu verfasserin aut Haiyan Jin verfasserin aut Jianfang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 3, p 352 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:3, p 352 https://doi.org/10.3390/jmse10030352 kostenfrei https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3 kostenfrei https://www.mdpi.com/2077-1312/10/3/352 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3, p 352 |
allfields_unstemmed |
10.3390/jmse10030352 doi (DE-627)DOAJ04779576X (DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoxia Cai verfasserin aut Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. colored DOM marine carbon cycle Arctic Ocean ice melt Pacific water inflow Naval architecture. Shipbuilding. Marine engineering Oceanography Yanpei Zhuang verfasserin aut Hongliang Li verfasserin aut Jing Xu verfasserin aut Haiyan Jin verfasserin aut Jianfang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 3, p 352 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:3, p 352 https://doi.org/10.3390/jmse10030352 kostenfrei https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3 kostenfrei https://www.mdpi.com/2077-1312/10/3/352 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3, p 352 |
allfieldsGer |
10.3390/jmse10030352 doi (DE-627)DOAJ04779576X (DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoxia Cai verfasserin aut Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. colored DOM marine carbon cycle Arctic Ocean ice melt Pacific water inflow Naval architecture. Shipbuilding. Marine engineering Oceanography Yanpei Zhuang verfasserin aut Hongliang Li verfasserin aut Jing Xu verfasserin aut Haiyan Jin verfasserin aut Jianfang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 3, p 352 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:3, p 352 https://doi.org/10.3390/jmse10030352 kostenfrei https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3 kostenfrei https://www.mdpi.com/2077-1312/10/3/352 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3, p 352 |
allfieldsSound |
10.3390/jmse10030352 doi (DE-627)DOAJ04779576X (DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Xiaoxia Cai verfasserin aut Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. colored DOM marine carbon cycle Arctic Ocean ice melt Pacific water inflow Naval architecture. Shipbuilding. Marine engineering Oceanography Yanpei Zhuang verfasserin aut Hongliang Li verfasserin aut Jing Xu verfasserin aut Haiyan Jin verfasserin aut Jianfang Chen verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 3, p 352 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:3, p 352 https://doi.org/10.3390/jmse10030352 kostenfrei https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3 kostenfrei https://www.mdpi.com/2077-1312/10/3/352 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 3, p 352 |
language |
English |
source |
In Journal of Marine Science and Engineering 10(2022), 3, p 352 volume:10 year:2022 number:3, p 352 |
sourceStr |
In Journal of Marine Science and Engineering 10(2022), 3, p 352 volume:10 year:2022 number:3, p 352 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
colored DOM marine carbon cycle Arctic Ocean ice melt Pacific water inflow Naval architecture. Shipbuilding. Marine engineering Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Marine Science and Engineering |
authorswithroles_txt_mv |
Xiaoxia Cai @@aut@@ Yanpei Zhuang @@aut@@ Hongliang Li @@aut@@ Jing Xu @@aut@@ Haiyan Jin @@aut@@ Jianfang Chen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771274181 |
id |
DOAJ04779576X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04779576X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414174038.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10030352</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04779576X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoxia Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">colored DOM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marine carbon cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arctic Ocean</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ice melt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pacific water inflow</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanpei Zhuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongliang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 3, p 352</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 352</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10030352</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/3/352</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 352</subfield></datafield></record></collection>
|
callnumber-first |
V - Naval Science |
author |
Xiaoxia Cai |
spellingShingle |
Xiaoxia Cai misc VM1-989 misc GC1-1581 misc colored DOM misc marine carbon cycle misc Arctic Ocean misc ice melt misc Pacific water inflow misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean |
authorStr |
Xiaoxia Cai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771274181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
VM1-989 |
illustrated |
Not Illustrated |
issn |
20771312 |
topic_title |
VM1-989 GC1-1581 Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean colored DOM marine carbon cycle Arctic Ocean ice melt Pacific water inflow |
topic |
misc VM1-989 misc GC1-1581 misc colored DOM misc marine carbon cycle misc Arctic Ocean misc ice melt misc Pacific water inflow misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_unstemmed |
misc VM1-989 misc GC1-1581 misc colored DOM misc marine carbon cycle misc Arctic Ocean misc ice melt misc Pacific water inflow misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_browse |
misc VM1-989 misc GC1-1581 misc colored DOM misc marine carbon cycle misc Arctic Ocean misc ice melt misc Pacific water inflow misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Marine Science and Engineering |
hierarchy_parent_id |
771274181 |
hierarchy_top_title |
Journal of Marine Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771274181 (DE-600)2738390-8 |
title |
Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean |
ctrlnum |
(DE-627)DOAJ04779576X (DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3 |
title_full |
Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean |
author_sort |
Xiaoxia Cai |
journal |
Journal of Marine Science and Engineering |
journalStr |
Journal of Marine Science and Engineering |
callnumber-first-code |
V |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Xiaoxia Cai Yanpei Zhuang Hongliang Li Jing Xu Haiyan Jin Jianfang Chen |
container_volume |
10 |
class |
VM1-989 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaoxia Cai |
doi_str_mv |
10.3390/jmse10030352 |
author2-role |
verfasserin |
title_sort |
spatial distribution of colored dissolved organic matter in the western arctic ocean |
callnumber |
VM1-989 |
title_auth |
Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean |
abstract |
Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. |
abstractGer |
Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. |
abstract_unstemmed |
Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 352 |
title_short |
Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean |
url |
https://doi.org/10.3390/jmse10030352 https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3 https://www.mdpi.com/2077-1312/10/3/352 https://doaj.org/toc/2077-1312 |
remote_bool |
true |
author2 |
Yanpei Zhuang Hongliang Li Jing Xu Haiyan Jin Jianfang Chen |
author2Str |
Yanpei Zhuang Hongliang Li Jing Xu Haiyan Jin Jianfang Chen |
ppnlink |
771274181 |
callnumber-subject |
VM - Naval Architecture, Shipbuilding, Marine Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jmse10030352 |
callnumber-a |
VM1-989 |
up_date |
2024-07-03T14:11:13.786Z |
_version_ |
1803567364881514496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04779576X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414174038.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10030352</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04779576X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfe1fc42979c94ac1bb39a485906373b3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoxia Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m<sup<−1</sup<, with the average for the oligotrophic basin area (1.04 ± 0.08 m<sup<−1</sup<) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m<sup<−1</sup<), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient <i<S</i<<sub<270–350</sub< was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">colored DOM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marine carbon cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arctic Ocean</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ice melt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pacific water inflow</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanpei Zhuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongliang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 3, p 352</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 352</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10030352</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fe1fc42979c94ac1bb39a485906373b3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/3/352</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 352</subfield></datafield></record></collection>
|
score |
7.3993187 |