An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process
The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vap...
Ausführliche Beschreibung
Autor*in: |
Olga Khliyeva [verfasserIn] Tetiana Lukianova [verfasserIn] Yury Semenyuk [verfasserIn] Vitaly Zhelezny [verfasserIn] Artem Nikulin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch ; Ukrainisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
vapor bubble departure diameter |
---|
Übergeordnetes Werk: |
In: Eastern-European Journal of Enterprise Technologies - PC Technology Center, 2019, 4(2018), 8 (94), Seite 59-66 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2018 ; number:8 (94) ; pages:59-66 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.15587/1729-4061.2018.139418 |
---|
Katalog-ID: |
DOAJ047981741 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ047981741 | ||
003 | DE-627 | ||
005 | 20230308131709.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.15587/1729-4061.2018.139418 |2 doi | |
035 | |a (DE-627)DOAJ047981741 | ||
035 | |a (DE-599)DOAJe001d307162d4c1e9150996784fedf7c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus |a ukr | ||
050 | 0 | |a T1-995 | |
050 | 0 | |a HD2321-4730.9 | |
100 | 0 | |a Olga Khliyeva |e verfasserin |4 aut | |
245 | 1 | 3 | |a An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. | ||
650 | 4 | |a nanofluid | |
650 | 4 | |a vapor bubble departure diameter | |
650 | 4 | |a vapor bubble departure frequency | |
650 | 4 | |a nucleation site density | |
653 | 0 | |a Technology (General) | |
653 | 0 | |a Industry | |
700 | 0 | |a Tetiana Lukianova |e verfasserin |4 aut | |
700 | 0 | |a Yury Semenyuk |e verfasserin |4 aut | |
700 | 0 | |a Vitaly Zhelezny |e verfasserin |4 aut | |
700 | 0 | |a Artem Nikulin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Eastern-European Journal of Enterprise Technologies |d PC Technology Center, 2019 |g 4(2018), 8 (94), Seite 59-66 |w (DE-627)737262753 |w (DE-600)2705552-8 |x 17294061 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2018 |g number:8 (94) |g pages:59-66 |
856 | 4 | 0 | |u https://doi.org/10.15587/1729-4061.2018.139418 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e001d307162d4c1e9150996784fedf7c |z kostenfrei |
856 | 4 | 0 | |u http://journals.uran.ua/eejet/article/view/139418 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1729-3774 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1729-4061 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2018 |e 8 (94) |h 59-66 |
author_variant |
o k ok t l tl y s ys v z vz a n an |
---|---|
matchkey_str |
article:17294061:2018----::nxeietltdotefetfaoatcediietteergrnr4 |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
T |
publishDate |
2018 |
allfields |
10.15587/1729-4061.2018.139418 doi (DE-627)DOAJ047981741 (DE-599)DOAJe001d307162d4c1e9150996784fedf7c DE-627 ger DE-627 rakwb eng rus ukr T1-995 HD2321-4730.9 Olga Khliyeva verfasserin aut An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. nanofluid vapor bubble departure diameter vapor bubble departure frequency nucleation site density Technology (General) Industry Tetiana Lukianova verfasserin aut Yury Semenyuk verfasserin aut Vitaly Zhelezny verfasserin aut Artem Nikulin verfasserin aut In Eastern-European Journal of Enterprise Technologies PC Technology Center, 2019 4(2018), 8 (94), Seite 59-66 (DE-627)737262753 (DE-600)2705552-8 17294061 nnns volume:4 year:2018 number:8 (94) pages:59-66 https://doi.org/10.15587/1729-4061.2018.139418 kostenfrei https://doaj.org/article/e001d307162d4c1e9150996784fedf7c kostenfrei http://journals.uran.ua/eejet/article/view/139418 kostenfrei https://doaj.org/toc/1729-3774 Journal toc kostenfrei https://doaj.org/toc/1729-4061 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 8 (94) 59-66 |
spelling |
10.15587/1729-4061.2018.139418 doi (DE-627)DOAJ047981741 (DE-599)DOAJe001d307162d4c1e9150996784fedf7c DE-627 ger DE-627 rakwb eng rus ukr T1-995 HD2321-4730.9 Olga Khliyeva verfasserin aut An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. nanofluid vapor bubble departure diameter vapor bubble departure frequency nucleation site density Technology (General) Industry Tetiana Lukianova verfasserin aut Yury Semenyuk verfasserin aut Vitaly Zhelezny verfasserin aut Artem Nikulin verfasserin aut In Eastern-European Journal of Enterprise Technologies PC Technology Center, 2019 4(2018), 8 (94), Seite 59-66 (DE-627)737262753 (DE-600)2705552-8 17294061 nnns volume:4 year:2018 number:8 (94) pages:59-66 https://doi.org/10.15587/1729-4061.2018.139418 kostenfrei https://doaj.org/article/e001d307162d4c1e9150996784fedf7c kostenfrei http://journals.uran.ua/eejet/article/view/139418 kostenfrei https://doaj.org/toc/1729-3774 Journal toc kostenfrei https://doaj.org/toc/1729-4061 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 8 (94) 59-66 |
allfields_unstemmed |
10.15587/1729-4061.2018.139418 doi (DE-627)DOAJ047981741 (DE-599)DOAJe001d307162d4c1e9150996784fedf7c DE-627 ger DE-627 rakwb eng rus ukr T1-995 HD2321-4730.9 Olga Khliyeva verfasserin aut An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. nanofluid vapor bubble departure diameter vapor bubble departure frequency nucleation site density Technology (General) Industry Tetiana Lukianova verfasserin aut Yury Semenyuk verfasserin aut Vitaly Zhelezny verfasserin aut Artem Nikulin verfasserin aut In Eastern-European Journal of Enterprise Technologies PC Technology Center, 2019 4(2018), 8 (94), Seite 59-66 (DE-627)737262753 (DE-600)2705552-8 17294061 nnns volume:4 year:2018 number:8 (94) pages:59-66 https://doi.org/10.15587/1729-4061.2018.139418 kostenfrei https://doaj.org/article/e001d307162d4c1e9150996784fedf7c kostenfrei http://journals.uran.ua/eejet/article/view/139418 kostenfrei https://doaj.org/toc/1729-3774 Journal toc kostenfrei https://doaj.org/toc/1729-4061 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 8 (94) 59-66 |
allfieldsGer |
10.15587/1729-4061.2018.139418 doi (DE-627)DOAJ047981741 (DE-599)DOAJe001d307162d4c1e9150996784fedf7c DE-627 ger DE-627 rakwb eng rus ukr T1-995 HD2321-4730.9 Olga Khliyeva verfasserin aut An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. nanofluid vapor bubble departure diameter vapor bubble departure frequency nucleation site density Technology (General) Industry Tetiana Lukianova verfasserin aut Yury Semenyuk verfasserin aut Vitaly Zhelezny verfasserin aut Artem Nikulin verfasserin aut In Eastern-European Journal of Enterprise Technologies PC Technology Center, 2019 4(2018), 8 (94), Seite 59-66 (DE-627)737262753 (DE-600)2705552-8 17294061 nnns volume:4 year:2018 number:8 (94) pages:59-66 https://doi.org/10.15587/1729-4061.2018.139418 kostenfrei https://doaj.org/article/e001d307162d4c1e9150996784fedf7c kostenfrei http://journals.uran.ua/eejet/article/view/139418 kostenfrei https://doaj.org/toc/1729-3774 Journal toc kostenfrei https://doaj.org/toc/1729-4061 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 8 (94) 59-66 |
allfieldsSound |
10.15587/1729-4061.2018.139418 doi (DE-627)DOAJ047981741 (DE-599)DOAJe001d307162d4c1e9150996784fedf7c DE-627 ger DE-627 rakwb eng rus ukr T1-995 HD2321-4730.9 Olga Khliyeva verfasserin aut An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. nanofluid vapor bubble departure diameter vapor bubble departure frequency nucleation site density Technology (General) Industry Tetiana Lukianova verfasserin aut Yury Semenyuk verfasserin aut Vitaly Zhelezny verfasserin aut Artem Nikulin verfasserin aut In Eastern-European Journal of Enterprise Technologies PC Technology Center, 2019 4(2018), 8 (94), Seite 59-66 (DE-627)737262753 (DE-600)2705552-8 17294061 nnns volume:4 year:2018 number:8 (94) pages:59-66 https://doi.org/10.15587/1729-4061.2018.139418 kostenfrei https://doaj.org/article/e001d307162d4c1e9150996784fedf7c kostenfrei http://journals.uran.ua/eejet/article/view/139418 kostenfrei https://doaj.org/toc/1729-3774 Journal toc kostenfrei https://doaj.org/toc/1729-4061 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2018 8 (94) 59-66 |
language |
English Russian Ukrainian |
source |
In Eastern-European Journal of Enterprise Technologies 4(2018), 8 (94), Seite 59-66 volume:4 year:2018 number:8 (94) pages:59-66 |
sourceStr |
In Eastern-European Journal of Enterprise Technologies 4(2018), 8 (94), Seite 59-66 volume:4 year:2018 number:8 (94) pages:59-66 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nanofluid vapor bubble departure diameter vapor bubble departure frequency nucleation site density Technology (General) Industry |
isfreeaccess_bool |
true |
container_title |
Eastern-European Journal of Enterprise Technologies |
authorswithroles_txt_mv |
Olga Khliyeva @@aut@@ Tetiana Lukianova @@aut@@ Yury Semenyuk @@aut@@ Vitaly Zhelezny @@aut@@ Artem Nikulin @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
737262753 |
id |
DOAJ047981741 |
language_de |
englisch russisch ukrainisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047981741</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308131709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15587/1729-4061.2018.139418</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047981741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe001d307162d4c1e9150996784fedf7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield><subfield code="a">ukr</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD2321-4730.9</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olga Khliyeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vapor bubble departure diameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vapor bubble departure frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nucleation site density</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tetiana Lukianova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yury Semenyuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitaly Zhelezny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Artem Nikulin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Eastern-European Journal of Enterprise Technologies</subfield><subfield code="d">PC Technology Center, 2019</subfield><subfield code="g">4(2018), 8 (94), Seite 59-66</subfield><subfield code="w">(DE-627)737262753</subfield><subfield code="w">(DE-600)2705552-8</subfield><subfield code="x">17294061</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8 (94)</subfield><subfield code="g">pages:59-66</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15587/1729-4061.2018.139418</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e001d307162d4c1e9150996784fedf7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journals.uran.ua/eejet/article/view/139418</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1729-3774</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1729-4061</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2018</subfield><subfield code="e">8 (94)</subfield><subfield code="h">59-66</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Olga Khliyeva |
spellingShingle |
Olga Khliyeva misc T1-995 misc HD2321-4730.9 misc nanofluid misc vapor bubble departure diameter misc vapor bubble departure frequency misc nucleation site density misc Technology (General) misc Industry An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process |
authorStr |
Olga Khliyeva |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737262753 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T1-995 |
illustrated |
Not Illustrated |
issn |
17294061 |
topic_title |
T1-995 HD2321-4730.9 An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process nanofluid vapor bubble departure diameter vapor bubble departure frequency nucleation site density |
topic |
misc T1-995 misc HD2321-4730.9 misc nanofluid misc vapor bubble departure diameter misc vapor bubble departure frequency misc nucleation site density misc Technology (General) misc Industry |
topic_unstemmed |
misc T1-995 misc HD2321-4730.9 misc nanofluid misc vapor bubble departure diameter misc vapor bubble departure frequency misc nucleation site density misc Technology (General) misc Industry |
topic_browse |
misc T1-995 misc HD2321-4730.9 misc nanofluid misc vapor bubble departure diameter misc vapor bubble departure frequency misc nucleation site density misc Technology (General) misc Industry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Eastern-European Journal of Enterprise Technologies |
hierarchy_parent_id |
737262753 |
hierarchy_top_title |
Eastern-European Journal of Enterprise Technologies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737262753 (DE-600)2705552-8 |
title |
An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process |
ctrlnum |
(DE-627)DOAJ047981741 (DE-599)DOAJe001d307162d4c1e9150996784fedf7c |
title_full |
An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process |
author_sort |
Olga Khliyeva |
journal |
Eastern-European Journal of Enterprise Technologies |
journalStr |
Eastern-European Journal of Enterprise Technologies |
callnumber-first-code |
T |
lang_code |
eng rus ukr |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
59 |
author_browse |
Olga Khliyeva Tetiana Lukianova Yury Semenyuk Vitaly Zhelezny Artem Nikulin |
container_volume |
4 |
class |
T1-995 HD2321-4730.9 |
format_se |
Elektronische Aufsätze |
author-letter |
Olga Khliyeva |
doi_str_mv |
10.15587/1729-4061.2018.139418 |
author2-role |
verfasserin |
title_sort |
experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process |
callnumber |
T1-995 |
title_auth |
An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process |
abstract |
The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. |
abstractGer |
The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. |
abstract_unstemmed |
The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 (94) |
title_short |
An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process |
url |
https://doi.org/10.15587/1729-4061.2018.139418 https://doaj.org/article/e001d307162d4c1e9150996784fedf7c http://journals.uran.ua/eejet/article/view/139418 https://doaj.org/toc/1729-3774 https://doaj.org/toc/1729-4061 |
remote_bool |
true |
author2 |
Tetiana Lukianova Yury Semenyuk Vitaly Zhelezny Artem Nikulin |
author2Str |
Tetiana Lukianova Yury Semenyuk Vitaly Zhelezny Artem Nikulin |
ppnlink |
737262753 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.15587/1729-4061.2018.139418 |
callnumber-a |
T1-995 |
up_date |
2024-07-03T15:16:17.900Z |
_version_ |
1803571458636513280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ047981741</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308131709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15587/1729-4061.2018.139418</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ047981741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe001d307162d4c1e9150996784fedf7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield><subfield code="a">ukr</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD2321-4730.9</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olga Khliyeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented. The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2. The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface. It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface. It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80. The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes. Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface. The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vapor bubble departure diameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vapor bubble departure frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nucleation site density</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tetiana Lukianova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yury Semenyuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitaly Zhelezny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Artem Nikulin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Eastern-European Journal of Enterprise Technologies</subfield><subfield code="d">PC Technology Center, 2019</subfield><subfield code="g">4(2018), 8 (94), Seite 59-66</subfield><subfield code="w">(DE-627)737262753</subfield><subfield code="w">(DE-600)2705552-8</subfield><subfield code="x">17294061</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8 (94)</subfield><subfield code="g">pages:59-66</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15587/1729-4061.2018.139418</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e001d307162d4c1e9150996784fedf7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journals.uran.ua/eejet/article/view/139418</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1729-3774</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1729-4061</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2018</subfield><subfield code="e">8 (94)</subfield><subfield code="h">59-66</subfield></datafield></record></collection>
|
score |
7.3984203 |