A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability
Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these...
Ausführliche Beschreibung
Autor*in: |
Simon Elias Bibri [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy Informatics - SpringerOpen, 2018, 4(2021), 1, Seite 37 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2021 ; number:1 ; pages:37 |
Links: |
---|
DOI / URN: |
10.1186/s42162-021-00138-8 |
---|
Katalog-ID: |
DOAJ048040053 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ048040053 | ||
003 | DE-627 | ||
005 | 20230308132149.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s42162-021-00138-8 |2 doi | |
035 | |a (DE-627)DOAJ048040053 | ||
035 | |a (DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a HD9502-9502.5 | |
100 | 0 | |a Simon Elias Bibri |e verfasserin |4 aut | |
245 | 1 | 2 | |a A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. | ||
650 | 4 | |a Sustainable cities | |
650 | 4 | |a Smart cities | |
650 | 4 | |a Data–driven smart sustainable cities | |
650 | 4 | |a Eco–cities | |
650 | 4 | |a Compact cities | |
650 | 4 | |a Institutional transformations | |
653 | 0 | |a Energy industries. Energy policy. Fuel trade | |
773 | 0 | 8 | |i In |t Energy Informatics |d SpringerOpen, 2018 |g 4(2021), 1, Seite 37 |w (DE-627)1031001387 |x 25208942 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2021 |g number:1 |g pages:37 |
856 | 4 | 0 | |u https://doi.org/10.1186/s42162-021-00138-8 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s42162-021-00138-8 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2520-8942 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2021 |e 1 |h 37 |
author_variant |
s e b seb |
---|---|
matchkey_str |
article:25208942:2021----::nvloefraarvnmrssanbeiisfhftrtentttoatasomtoseurdoblnign |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
HD |
publishDate |
2021 |
allfields |
10.1186/s42162-021-00138-8 doi (DE-627)DOAJ048040053 (DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2 DE-627 ger DE-627 rakwb eng HD9502-9502.5 Simon Elias Bibri verfasserin aut A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. Sustainable cities Smart cities Data–driven smart sustainable cities Eco–cities Compact cities Institutional transformations Energy industries. Energy policy. Fuel trade In Energy Informatics SpringerOpen, 2018 4(2021), 1, Seite 37 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:1 pages:37 https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2 kostenfrei https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 1 37 |
spelling |
10.1186/s42162-021-00138-8 doi (DE-627)DOAJ048040053 (DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2 DE-627 ger DE-627 rakwb eng HD9502-9502.5 Simon Elias Bibri verfasserin aut A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. Sustainable cities Smart cities Data–driven smart sustainable cities Eco–cities Compact cities Institutional transformations Energy industries. Energy policy. Fuel trade In Energy Informatics SpringerOpen, 2018 4(2021), 1, Seite 37 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:1 pages:37 https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2 kostenfrei https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 1 37 |
allfields_unstemmed |
10.1186/s42162-021-00138-8 doi (DE-627)DOAJ048040053 (DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2 DE-627 ger DE-627 rakwb eng HD9502-9502.5 Simon Elias Bibri verfasserin aut A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. Sustainable cities Smart cities Data–driven smart sustainable cities Eco–cities Compact cities Institutional transformations Energy industries. Energy policy. Fuel trade In Energy Informatics SpringerOpen, 2018 4(2021), 1, Seite 37 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:1 pages:37 https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2 kostenfrei https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 1 37 |
allfieldsGer |
10.1186/s42162-021-00138-8 doi (DE-627)DOAJ048040053 (DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2 DE-627 ger DE-627 rakwb eng HD9502-9502.5 Simon Elias Bibri verfasserin aut A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. Sustainable cities Smart cities Data–driven smart sustainable cities Eco–cities Compact cities Institutional transformations Energy industries. Energy policy. Fuel trade In Energy Informatics SpringerOpen, 2018 4(2021), 1, Seite 37 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:1 pages:37 https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2 kostenfrei https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 1 37 |
allfieldsSound |
10.1186/s42162-021-00138-8 doi (DE-627)DOAJ048040053 (DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2 DE-627 ger DE-627 rakwb eng HD9502-9502.5 Simon Elias Bibri verfasserin aut A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. Sustainable cities Smart cities Data–driven smart sustainable cities Eco–cities Compact cities Institutional transformations Energy industries. Energy policy. Fuel trade In Energy Informatics SpringerOpen, 2018 4(2021), 1, Seite 37 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:1 pages:37 https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2 kostenfrei https://doi.org/10.1186/s42162-021-00138-8 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 1 37 |
language |
English |
source |
In Energy Informatics 4(2021), 1, Seite 37 volume:4 year:2021 number:1 pages:37 |
sourceStr |
In Energy Informatics 4(2021), 1, Seite 37 volume:4 year:2021 number:1 pages:37 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sustainable cities Smart cities Data–driven smart sustainable cities Eco–cities Compact cities Institutional transformations Energy industries. Energy policy. Fuel trade |
isfreeaccess_bool |
true |
container_title |
Energy Informatics |
authorswithroles_txt_mv |
Simon Elias Bibri @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1031001387 |
id |
DOAJ048040053 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048040053</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308132149.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42162-021-00138-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048040053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD9502-9502.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Simon Elias Bibri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data–driven smart sustainable cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eco–cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Institutional transformations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy industries. Energy policy. Fuel trade</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Informatics</subfield><subfield code="d">SpringerOpen, 2018</subfield><subfield code="g">4(2021), 1, Seite 37</subfield><subfield code="w">(DE-627)1031001387</subfield><subfield code="x">25208942</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:37</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-8942</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">37</subfield></datafield></record></collection>
|
callnumber-first |
H - Social Science |
author |
Simon Elias Bibri |
spellingShingle |
Simon Elias Bibri misc HD9502-9502.5 misc Sustainable cities misc Smart cities misc Data–driven smart sustainable cities misc Eco–cities misc Compact cities misc Institutional transformations misc Energy industries. Energy policy. Fuel trade A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability |
authorStr |
Simon Elias Bibri |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1031001387 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
HD9502-9502 |
illustrated |
Not Illustrated |
issn |
25208942 |
topic_title |
HD9502-9502.5 A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability Sustainable cities Smart cities Data–driven smart sustainable cities Eco–cities Compact cities Institutional transformations |
topic |
misc HD9502-9502.5 misc Sustainable cities misc Smart cities misc Data–driven smart sustainable cities misc Eco–cities misc Compact cities misc Institutional transformations misc Energy industries. Energy policy. Fuel trade |
topic_unstemmed |
misc HD9502-9502.5 misc Sustainable cities misc Smart cities misc Data–driven smart sustainable cities misc Eco–cities misc Compact cities misc Institutional transformations misc Energy industries. Energy policy. Fuel trade |
topic_browse |
misc HD9502-9502.5 misc Sustainable cities misc Smart cities misc Data–driven smart sustainable cities misc Eco–cities misc Compact cities misc Institutional transformations misc Energy industries. Energy policy. Fuel trade |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Informatics |
hierarchy_parent_id |
1031001387 |
hierarchy_top_title |
Energy Informatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1031001387 |
title |
A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability |
ctrlnum |
(DE-627)DOAJ048040053 (DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2 |
title_full |
A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability |
author_sort |
Simon Elias Bibri |
journal |
Energy Informatics |
journalStr |
Energy Informatics |
callnumber-first-code |
H |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
37 |
author_browse |
Simon Elias Bibri |
container_volume |
4 |
class |
HD9502-9502.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Simon Elias Bibri |
doi_str_mv |
10.1186/s42162-021-00138-8 |
title_sort |
novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability |
callnumber |
HD9502-9502.5 |
title_auth |
A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability |
abstract |
Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. |
abstractGer |
Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. |
abstract_unstemmed |
Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability |
url |
https://doi.org/10.1186/s42162-021-00138-8 https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2 https://doaj.org/toc/2520-8942 |
remote_bool |
true |
ppnlink |
1031001387 |
callnumber-subject |
HD - Industries, Land Use, Labor |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s42162-021-00138-8 |
callnumber-a |
HD9502-9502.5 |
up_date |
2024-07-03T15:35:23.424Z |
_version_ |
1803572659800244224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048040053</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308132149.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42162-021-00138-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048040053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe4cac12f381646f2928b1a4d346b0dd2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD9502-9502.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Simon Elias Bibri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel model for data-driven smart sustainable cities of the future: the institutional transformations required for balancing and advancing the three goals of sustainability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, it has become increasingly feasible to achieve important improvements of sustainability by integrating sustainable urbanism with smart urbanism thanks to the proven role and synergic potential of data-driven technologies. Indeed, the processes and practices of both of these approaches to urban planning and development are becoming highly responsive to a form of data-driven urbanism, giving rise to a new phenomenon known as “data-driven smart sustainable urbanism.” Underlying this emerging approach is the idea of combining and integrating the strengths of sustainable cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable sustainable cities to optimize, enhance, and maintain their performance on the basis of the innovative data-driven technologies offered by smart cities. These strengths and synergies can be clearly demonstrated by combining the advantages of sustainable urbanism and smart urbanism. To enable such combination, major institutional transformations are required in terms of enhanced and new practices and competences. Based on case study research, this paper identifies, distills, and enumerates the key benefits, potentials, and opportunities of sustainable cities and smart cities with respect to the three dimensions of sustainability, as well as the key institutional transformations needed to support the balancing of these dimensions and to enable the introduction of data-driven technology and the adoption of applied data-driven solutions in city operational management and development planning. This paper is an integral part of a futures study that aims to analyze, investigate, and develop a novel model for data-driven smart sustainable cities of the future. I argue that the emerging data-driven technologies for sustainability as innovative niches are reconfiguring the socio-technical landscape of institutions, as well as providing insights to policymakers into pathways for strengthening existing institutionalized practices and competences and developing and establishing new ones. This is necessary for balancing and advancing the goals of sustainability and thus achieving a desirable future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data–driven smart sustainable cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eco–cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Institutional transformations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy industries. Energy policy. Fuel trade</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Informatics</subfield><subfield code="d">SpringerOpen, 2018</subfield><subfield code="g">4(2021), 1, Seite 37</subfield><subfield code="w">(DE-627)1031001387</subfield><subfield code="x">25208942</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:37</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e4cac12f381646f2928b1a4d346b0dd2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00138-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-8942</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">37</subfield></datafield></record></collection>
|
score |
7.4018974 |