Efficient solution of the DC-link hard switching inverter of the PV system
Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in t...
Ausführliche Beschreibung
Autor*in: |
Usama Khaled [verfasserIn] Hassan Farh [verfasserIn] Salman Alissa [verfasserIn] Abdulrhman Abanmi [verfasserIn] Omar Aldraimli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of King Saud University: Engineering Sciences - Elsevier, 2016, 32(2020), 7, Seite 425-431 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2020 ; number:7 ; pages:425-431 |
Links: |
---|
DOI / URN: |
10.1016/j.jksues.2018.09.001 |
---|
Katalog-ID: |
DOAJ048171042 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ048171042 | ||
003 | DE-627 | ||
005 | 20230503011945.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jksues.2018.09.001 |2 doi | |
035 | |a (DE-627)DOAJ048171042 | ||
035 | |a (DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Usama Khaled |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient solution of the DC-link hard switching inverter of the PV system |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. | ||
650 | 4 | |a Resonant dc-link soft switching | |
650 | 4 | |a Hard switching inverter | |
650 | 4 | |a Soft switching | |
650 | 4 | |a Switching losses | |
650 | 4 | |a Conduction losses | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Hassan Farh |e verfasserin |4 aut | |
700 | 0 | |a Salman Alissa |e verfasserin |4 aut | |
700 | 0 | |a Abdulrhman Abanmi |e verfasserin |4 aut | |
700 | 0 | |a Omar Aldraimli |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of King Saud University: Engineering Sciences |d Elsevier, 2016 |g 32(2020), 7, Seite 425-431 |w (DE-627)746705840 |w (DE-600)2716728-8 |x 10183639 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2020 |g number:7 |g pages:425-431 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jksues.2018.09.001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1018363918301144 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1018-3639 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 32 |j 2020 |e 7 |h 425-431 |
author_variant |
u k uk h f hf s a sa a a aa o a oa |
---|---|
matchkey_str |
article:10183639:2020----::fiinsltootecikadwthniv |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TA |
publishDate |
2020 |
allfields |
10.1016/j.jksues.2018.09.001 doi (DE-627)DOAJ048171042 (DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd DE-627 ger DE-627 rakwb eng TA1-2040 Usama Khaled verfasserin aut Efficient solution of the DC-link hard switching inverter of the PV system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. Resonant dc-link soft switching Hard switching inverter Soft switching Switching losses Conduction losses Engineering (General). Civil engineering (General) Hassan Farh verfasserin aut Salman Alissa verfasserin aut Abdulrhman Abanmi verfasserin aut Omar Aldraimli verfasserin aut In Journal of King Saud University: Engineering Sciences Elsevier, 2016 32(2020), 7, Seite 425-431 (DE-627)746705840 (DE-600)2716728-8 10183639 nnns volume:32 year:2020 number:7 pages:425-431 https://doi.org/10.1016/j.jksues.2018.09.001 kostenfrei https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd kostenfrei http://www.sciencedirect.com/science/article/pii/S1018363918301144 kostenfrei https://doaj.org/toc/1018-3639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2020 7 425-431 |
spelling |
10.1016/j.jksues.2018.09.001 doi (DE-627)DOAJ048171042 (DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd DE-627 ger DE-627 rakwb eng TA1-2040 Usama Khaled verfasserin aut Efficient solution of the DC-link hard switching inverter of the PV system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. Resonant dc-link soft switching Hard switching inverter Soft switching Switching losses Conduction losses Engineering (General). Civil engineering (General) Hassan Farh verfasserin aut Salman Alissa verfasserin aut Abdulrhman Abanmi verfasserin aut Omar Aldraimli verfasserin aut In Journal of King Saud University: Engineering Sciences Elsevier, 2016 32(2020), 7, Seite 425-431 (DE-627)746705840 (DE-600)2716728-8 10183639 nnns volume:32 year:2020 number:7 pages:425-431 https://doi.org/10.1016/j.jksues.2018.09.001 kostenfrei https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd kostenfrei http://www.sciencedirect.com/science/article/pii/S1018363918301144 kostenfrei https://doaj.org/toc/1018-3639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2020 7 425-431 |
allfields_unstemmed |
10.1016/j.jksues.2018.09.001 doi (DE-627)DOAJ048171042 (DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd DE-627 ger DE-627 rakwb eng TA1-2040 Usama Khaled verfasserin aut Efficient solution of the DC-link hard switching inverter of the PV system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. Resonant dc-link soft switching Hard switching inverter Soft switching Switching losses Conduction losses Engineering (General). Civil engineering (General) Hassan Farh verfasserin aut Salman Alissa verfasserin aut Abdulrhman Abanmi verfasserin aut Omar Aldraimli verfasserin aut In Journal of King Saud University: Engineering Sciences Elsevier, 2016 32(2020), 7, Seite 425-431 (DE-627)746705840 (DE-600)2716728-8 10183639 nnns volume:32 year:2020 number:7 pages:425-431 https://doi.org/10.1016/j.jksues.2018.09.001 kostenfrei https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd kostenfrei http://www.sciencedirect.com/science/article/pii/S1018363918301144 kostenfrei https://doaj.org/toc/1018-3639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2020 7 425-431 |
allfieldsGer |
10.1016/j.jksues.2018.09.001 doi (DE-627)DOAJ048171042 (DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd DE-627 ger DE-627 rakwb eng TA1-2040 Usama Khaled verfasserin aut Efficient solution of the DC-link hard switching inverter of the PV system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. Resonant dc-link soft switching Hard switching inverter Soft switching Switching losses Conduction losses Engineering (General). Civil engineering (General) Hassan Farh verfasserin aut Salman Alissa verfasserin aut Abdulrhman Abanmi verfasserin aut Omar Aldraimli verfasserin aut In Journal of King Saud University: Engineering Sciences Elsevier, 2016 32(2020), 7, Seite 425-431 (DE-627)746705840 (DE-600)2716728-8 10183639 nnns volume:32 year:2020 number:7 pages:425-431 https://doi.org/10.1016/j.jksues.2018.09.001 kostenfrei https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd kostenfrei http://www.sciencedirect.com/science/article/pii/S1018363918301144 kostenfrei https://doaj.org/toc/1018-3639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2020 7 425-431 |
allfieldsSound |
10.1016/j.jksues.2018.09.001 doi (DE-627)DOAJ048171042 (DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd DE-627 ger DE-627 rakwb eng TA1-2040 Usama Khaled verfasserin aut Efficient solution of the DC-link hard switching inverter of the PV system 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. Resonant dc-link soft switching Hard switching inverter Soft switching Switching losses Conduction losses Engineering (General). Civil engineering (General) Hassan Farh verfasserin aut Salman Alissa verfasserin aut Abdulrhman Abanmi verfasserin aut Omar Aldraimli verfasserin aut In Journal of King Saud University: Engineering Sciences Elsevier, 2016 32(2020), 7, Seite 425-431 (DE-627)746705840 (DE-600)2716728-8 10183639 nnns volume:32 year:2020 number:7 pages:425-431 https://doi.org/10.1016/j.jksues.2018.09.001 kostenfrei https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd kostenfrei http://www.sciencedirect.com/science/article/pii/S1018363918301144 kostenfrei https://doaj.org/toc/1018-3639 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2020 7 425-431 |
language |
English |
source |
In Journal of King Saud University: Engineering Sciences 32(2020), 7, Seite 425-431 volume:32 year:2020 number:7 pages:425-431 |
sourceStr |
In Journal of King Saud University: Engineering Sciences 32(2020), 7, Seite 425-431 volume:32 year:2020 number:7 pages:425-431 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Resonant dc-link soft switching Hard switching inverter Soft switching Switching losses Conduction losses Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Journal of King Saud University: Engineering Sciences |
authorswithroles_txt_mv |
Usama Khaled @@aut@@ Hassan Farh @@aut@@ Salman Alissa @@aut@@ Abdulrhman Abanmi @@aut@@ Omar Aldraimli @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
746705840 |
id |
DOAJ048171042 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048171042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503011945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jksues.2018.09.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048171042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Usama Khaled</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient solution of the DC-link hard switching inverter of the PV system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant dc-link soft switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hard switching inverter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching losses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conduction losses</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hassan Farh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Salman Alissa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdulrhman Abanmi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Omar Aldraimli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of King Saud University: Engineering Sciences</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">32(2020), 7, Seite 425-431</subfield><subfield code="w">(DE-627)746705840</subfield><subfield code="w">(DE-600)2716728-8</subfield><subfield code="x">10183639</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:425-431</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jksues.2018.09.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1018363918301144</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1018-3639</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2020</subfield><subfield code="e">7</subfield><subfield code="h">425-431</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Usama Khaled |
spellingShingle |
Usama Khaled misc TA1-2040 misc Resonant dc-link soft switching misc Hard switching inverter misc Soft switching misc Switching losses misc Conduction losses misc Engineering (General). Civil engineering (General) Efficient solution of the DC-link hard switching inverter of the PV system |
authorStr |
Usama Khaled |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)746705840 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
10183639 |
topic_title |
TA1-2040 Efficient solution of the DC-link hard switching inverter of the PV system Resonant dc-link soft switching Hard switching inverter Soft switching Switching losses Conduction losses |
topic |
misc TA1-2040 misc Resonant dc-link soft switching misc Hard switching inverter misc Soft switching misc Switching losses misc Conduction losses misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc Resonant dc-link soft switching misc Hard switching inverter misc Soft switching misc Switching losses misc Conduction losses misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc Resonant dc-link soft switching misc Hard switching inverter misc Soft switching misc Switching losses misc Conduction losses misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of King Saud University: Engineering Sciences |
hierarchy_parent_id |
746705840 |
hierarchy_top_title |
Journal of King Saud University: Engineering Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)746705840 (DE-600)2716728-8 |
title |
Efficient solution of the DC-link hard switching inverter of the PV system |
ctrlnum |
(DE-627)DOAJ048171042 (DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd |
title_full |
Efficient solution of the DC-link hard switching inverter of the PV system |
author_sort |
Usama Khaled |
journal |
Journal of King Saud University: Engineering Sciences |
journalStr |
Journal of King Saud University: Engineering Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
425 |
author_browse |
Usama Khaled Hassan Farh Salman Alissa Abdulrhman Abanmi Omar Aldraimli |
container_volume |
32 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Usama Khaled |
doi_str_mv |
10.1016/j.jksues.2018.09.001 |
author2-role |
verfasserin |
title_sort |
efficient solution of the dc-link hard switching inverter of the pv system |
callnumber |
TA1-2040 |
title_auth |
Efficient solution of the DC-link hard switching inverter of the PV system |
abstract |
Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. |
abstractGer |
Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. |
abstract_unstemmed |
Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Efficient solution of the DC-link hard switching inverter of the PV system |
url |
https://doi.org/10.1016/j.jksues.2018.09.001 https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd http://www.sciencedirect.com/science/article/pii/S1018363918301144 https://doaj.org/toc/1018-3639 |
remote_bool |
true |
author2 |
Hassan Farh Salman Alissa Abdulrhman Abanmi Omar Aldraimli |
author2Str |
Hassan Farh Salman Alissa Abdulrhman Abanmi Omar Aldraimli |
ppnlink |
746705840 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jksues.2018.09.001 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T16:19:26.685Z |
_version_ |
1803575431476019200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048171042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503011945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jksues.2018.09.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048171042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcc0d65089ef747198c2d4386d241e0fd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Usama Khaled</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient solution of the DC-link hard switching inverter of the PV system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soft switching inverter alleviate and treat the negative impacts resulted from hard switching inverter. It provides many advantages such as low power losses, high efficiency, stress reduction during switching instants, and high reliability and lowering EMI generation. Soft switching is achieved in this paper by adding the LC resonant circuit to the voltage source inverters (VSI). This is the first time to achieve soft switching with the photovoltaic (PV) system. To demonstrate the effectiveness of this technique, the simulation of the PV system is using both switching techniques; the resonant dc-link soft switching inverter and the conventional hard switching inverter; is introduced, analyzed and compared. The total resonant dc-link soft switching losses are reduced dramatically to the half of the total hard switching losses in case of not using soft switching. To validate our work, the detailed comparisons between the proposed topology with another famous one is introduced, analyzed and evaluated. In addition, the resonant dc-link soft switching losses and the hard switching losses of the inverter are estimated. The total resonant dc-link soft switching losses and the total hard switching losses are calculated under similar operating conditions and the conduction losses are kept constant in both switching modes. The simulation results prove the superiority performance of the PV system based on the proposed resonant dc-link soft switching mode compared to the other ones based on the conventional hard switching mode and single transistor resonant dc-link soft switching inverter.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant dc-link soft switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hard switching inverter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching losses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conduction losses</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hassan Farh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Salman Alissa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdulrhman Abanmi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Omar Aldraimli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of King Saud University: Engineering Sciences</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">32(2020), 7, Seite 425-431</subfield><subfield code="w">(DE-627)746705840</subfield><subfield code="w">(DE-600)2716728-8</subfield><subfield code="x">10183639</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:425-431</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jksues.2018.09.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cc0d65089ef747198c2d4386d241e0fd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1018363918301144</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1018-3639</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2020</subfield><subfield code="e">7</subfield><subfield code="h">425-431</subfield></datafield></record></collection>
|
score |
7.3998337 |