Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem
Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traf...
Ausführliche Beschreibung
Autor*in: |
Krylatov A. [verfasserIn] Raevskaya A. [verfasserIn] Zakharov V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Transport and Telecommunication - Sciendo, 2012, 22(2021), 3, Seite 287-300 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2021 ; number:3 ; pages:287-300 |
Links: |
---|
DOI / URN: |
10.2478/ttj-2021-0022 |
---|
Katalog-ID: |
DOAJ048338516 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ048338516 | ||
003 | DE-627 | ||
005 | 20230503071355.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2478/ttj-2021-0022 |2 doi | |
035 | |a (DE-627)DOAJ048338516 | ||
035 | |a (DE-599)DOAJ0b96cc8b64094d029a564a59e1355489 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a K4011-4343 | |
100 | 0 | |a Krylatov A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. | ||
650 | 4 | |a travel demand estimation | |
650 | 4 | |a od-matrix estimation | |
650 | 4 | |a congestion | |
650 | 4 | |a traffic assignment problem | |
650 | 4 | |a primal and inverse problems | |
653 | 0 | |a Transportation and communication | |
700 | 0 | |a Raevskaya A. |e verfasserin |4 aut | |
700 | 0 | |a Zakharov V. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Transport and Telecommunication |d Sciendo, 2012 |g 22(2021), 3, Seite 287-300 |w (DE-627)722237057 |w (DE-600)2677597-9 |x 14076179 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2021 |g number:3 |g pages:287-300 |
856 | 4 | 0 | |u https://doi.org/10.2478/ttj-2021-0022 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0b96cc8b64094d029a564a59e1355489 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.2478/ttj-2021-0022 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1407-6179 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2021 |e 3 |h 287-300 |
author_variant |
k a ka r a ra z v zv |
---|---|
matchkey_str |
article:14076179:2021----::rvleadsiainnrarantokaivrerf |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
K |
publishDate |
2021 |
allfields |
10.2478/ttj-2021-0022 doi (DE-627)DOAJ048338516 (DE-599)DOAJ0b96cc8b64094d029a564a59e1355489 DE-627 ger DE-627 rakwb eng K4011-4343 Krylatov A. verfasserin aut Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. travel demand estimation od-matrix estimation congestion traffic assignment problem primal and inverse problems Transportation and communication Raevskaya A. verfasserin aut Zakharov V. verfasserin aut In Transport and Telecommunication Sciendo, 2012 22(2021), 3, Seite 287-300 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:22 year:2021 number:3 pages:287-300 https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/article/0b96cc8b64094d029a564a59e1355489 kostenfrei https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 3 287-300 |
spelling |
10.2478/ttj-2021-0022 doi (DE-627)DOAJ048338516 (DE-599)DOAJ0b96cc8b64094d029a564a59e1355489 DE-627 ger DE-627 rakwb eng K4011-4343 Krylatov A. verfasserin aut Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. travel demand estimation od-matrix estimation congestion traffic assignment problem primal and inverse problems Transportation and communication Raevskaya A. verfasserin aut Zakharov V. verfasserin aut In Transport and Telecommunication Sciendo, 2012 22(2021), 3, Seite 287-300 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:22 year:2021 number:3 pages:287-300 https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/article/0b96cc8b64094d029a564a59e1355489 kostenfrei https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 3 287-300 |
allfields_unstemmed |
10.2478/ttj-2021-0022 doi (DE-627)DOAJ048338516 (DE-599)DOAJ0b96cc8b64094d029a564a59e1355489 DE-627 ger DE-627 rakwb eng K4011-4343 Krylatov A. verfasserin aut Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. travel demand estimation od-matrix estimation congestion traffic assignment problem primal and inverse problems Transportation and communication Raevskaya A. verfasserin aut Zakharov V. verfasserin aut In Transport and Telecommunication Sciendo, 2012 22(2021), 3, Seite 287-300 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:22 year:2021 number:3 pages:287-300 https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/article/0b96cc8b64094d029a564a59e1355489 kostenfrei https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 3 287-300 |
allfieldsGer |
10.2478/ttj-2021-0022 doi (DE-627)DOAJ048338516 (DE-599)DOAJ0b96cc8b64094d029a564a59e1355489 DE-627 ger DE-627 rakwb eng K4011-4343 Krylatov A. verfasserin aut Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. travel demand estimation od-matrix estimation congestion traffic assignment problem primal and inverse problems Transportation and communication Raevskaya A. verfasserin aut Zakharov V. verfasserin aut In Transport and Telecommunication Sciendo, 2012 22(2021), 3, Seite 287-300 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:22 year:2021 number:3 pages:287-300 https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/article/0b96cc8b64094d029a564a59e1355489 kostenfrei https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 3 287-300 |
allfieldsSound |
10.2478/ttj-2021-0022 doi (DE-627)DOAJ048338516 (DE-599)DOAJ0b96cc8b64094d029a564a59e1355489 DE-627 ger DE-627 rakwb eng K4011-4343 Krylatov A. verfasserin aut Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. travel demand estimation od-matrix estimation congestion traffic assignment problem primal and inverse problems Transportation and communication Raevskaya A. verfasserin aut Zakharov V. verfasserin aut In Transport and Telecommunication Sciendo, 2012 22(2021), 3, Seite 287-300 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:22 year:2021 number:3 pages:287-300 https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/article/0b96cc8b64094d029a564a59e1355489 kostenfrei https://doi.org/10.2478/ttj-2021-0022 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 3 287-300 |
language |
English |
source |
In Transport and Telecommunication 22(2021), 3, Seite 287-300 volume:22 year:2021 number:3 pages:287-300 |
sourceStr |
In Transport and Telecommunication 22(2021), 3, Seite 287-300 volume:22 year:2021 number:3 pages:287-300 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
travel demand estimation od-matrix estimation congestion traffic assignment problem primal and inverse problems Transportation and communication |
isfreeaccess_bool |
true |
container_title |
Transport and Telecommunication |
authorswithroles_txt_mv |
Krylatov A. @@aut@@ Raevskaya A. @@aut@@ Zakharov V. @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
722237057 |
id |
DOAJ048338516 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048338516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503071355.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ttj-2021-0022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048338516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0b96cc8b64094d029a564a59e1355489</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">K4011-4343</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Krylatov A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">travel demand estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">od-matrix estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">congestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic assignment problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primal and inverse problems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communication</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raevskaya A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zakharov V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport and Telecommunication</subfield><subfield code="d">Sciendo, 2012</subfield><subfield code="g">22(2021), 3, Seite 287-300</subfield><subfield code="w">(DE-627)722237057</subfield><subfield code="w">(DE-600)2677597-9</subfield><subfield code="x">14076179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:287-300</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2021-0022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0b96cc8b64094d029a564a59e1355489</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2021-0022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1407-6179</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">287-300</subfield></datafield></record></collection>
|
callnumber-first |
K - Law |
author |
Krylatov A. |
spellingShingle |
Krylatov A. misc K4011-4343 misc travel demand estimation misc od-matrix estimation misc congestion misc traffic assignment problem misc primal and inverse problems misc Transportation and communication Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem |
authorStr |
Krylatov A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)722237057 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
K4011-4343 |
illustrated |
Not Illustrated |
issn |
14076179 |
topic_title |
K4011-4343 Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem travel demand estimation od-matrix estimation congestion traffic assignment problem primal and inverse problems |
topic |
misc K4011-4343 misc travel demand estimation misc od-matrix estimation misc congestion misc traffic assignment problem misc primal and inverse problems misc Transportation and communication |
topic_unstemmed |
misc K4011-4343 misc travel demand estimation misc od-matrix estimation misc congestion misc traffic assignment problem misc primal and inverse problems misc Transportation and communication |
topic_browse |
misc K4011-4343 misc travel demand estimation misc od-matrix estimation misc congestion misc traffic assignment problem misc primal and inverse problems misc Transportation and communication |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Transport and Telecommunication |
hierarchy_parent_id |
722237057 |
hierarchy_top_title |
Transport and Telecommunication |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)722237057 (DE-600)2677597-9 |
title |
Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem |
ctrlnum |
(DE-627)DOAJ048338516 (DE-599)DOAJ0b96cc8b64094d029a564a59e1355489 |
title_full |
Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem |
author_sort |
Krylatov A. |
journal |
Transport and Telecommunication |
journalStr |
Transport and Telecommunication |
callnumber-first-code |
K |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
287 |
author_browse |
Krylatov A. Raevskaya A. Zakharov V. |
container_volume |
22 |
class |
K4011-4343 |
format_se |
Elektronische Aufsätze |
author-letter |
Krylatov A. |
doi_str_mv |
10.2478/ttj-2021-0022 |
author2-role |
verfasserin |
title_sort |
travel demand estimation in urban road networks as inverse traffic assignment problem |
callnumber |
K4011-4343 |
title_auth |
Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem |
abstract |
Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. |
abstractGer |
Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. |
abstract_unstemmed |
Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem |
url |
https://doi.org/10.2478/ttj-2021-0022 https://doaj.org/article/0b96cc8b64094d029a564a59e1355489 https://doaj.org/toc/1407-6179 |
remote_bool |
true |
author2 |
Raevskaya A. Zakharov V. |
author2Str |
Raevskaya A. Zakharov V. |
ppnlink |
722237057 |
callnumber-subject |
K - General Law |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2478/ttj-2021-0022 |
callnumber-a |
K4011-4343 |
up_date |
2024-07-03T17:14:33.183Z |
_version_ |
1803578898576834560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048338516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503071355.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ttj-2021-0022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048338516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0b96cc8b64094d029a564a59e1355489</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">K4011-4343</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Krylatov A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Travel Demand Estimation in Urban Road Networks as Inverse Traffic Assignment Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning and management. However, not a one available tool is useful without precise travel demand information which is actually the key input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">travel demand estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">od-matrix estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">congestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic assignment problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primal and inverse problems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communication</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raevskaya A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zakharov V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport and Telecommunication</subfield><subfield code="d">Sciendo, 2012</subfield><subfield code="g">22(2021), 3, Seite 287-300</subfield><subfield code="w">(DE-627)722237057</subfield><subfield code="w">(DE-600)2677597-9</subfield><subfield code="x">14076179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:287-300</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2021-0022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0b96cc8b64094d029a564a59e1355489</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2021-0022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1407-6179</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">287-300</subfield></datafield></record></collection>
|
score |
7.40158 |