The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content<
ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we...
Ausführliche Beschreibung
Autor*in: |
Daniel Pletzer [verfasserIn] Travis M. Blimkie [verfasserIn] Heidi Wolfmeier [verfasserIn] Yicong Li [verfasserIn] Arjun Baghela [verfasserIn] Amy H. Y. Lee [verfasserIn] Reza Falsafi [verfasserIn] Robert E. W. Hancock [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: mSystems - American Society for Microbiology, 2017, 5(2020), 4 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2020 ; number:4 |
Links: |
---|
DOI / URN: |
10.1128/mSystems.00495-20 |
---|
Katalog-ID: |
DOAJ048434299 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ048434299 | ||
003 | DE-627 | ||
005 | 20230308134302.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1128/mSystems.00495-20 |2 doi | |
035 | |a (DE-627)DOAJ048434299 | ||
035 | |a (DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Daniel Pletzer |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. | ||
650 | 4 | |a ppGpp | |
650 | 4 | |a relA | |
650 | 4 | |a spoT | |
650 | 4 | |a aprA | |
650 | 4 | |a global transcriptional regulator | |
650 | 4 | |a global regulatory networks | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Travis M. Blimkie |e verfasserin |4 aut | |
700 | 0 | |a Heidi Wolfmeier |e verfasserin |4 aut | |
700 | 0 | |a Yicong Li |e verfasserin |4 aut | |
700 | 0 | |a Arjun Baghela |e verfasserin |4 aut | |
700 | 0 | |a Amy H. Y. Lee |e verfasserin |4 aut | |
700 | 0 | |a Reza Falsafi |e verfasserin |4 aut | |
700 | 0 | |a Robert E. W. Hancock |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t mSystems |d American Society for Microbiology, 2017 |g 5(2020), 4 |w (DE-627)84597212X |w (DE-600)2844333-0 |x 23795077 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2020 |g number:4 |
856 | 4 | 0 | |u https://doi.org/10.1128/mSystems.00495-20 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a |z kostenfrei |
856 | 4 | 0 | |u https://journals.asm.org/doi/10.1128/mSystems.00495-20 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2379-5077 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2020 |e 4 |
author_variant |
d p dp t m b tmb h w hw y l yl a b ab a h y l ahyl r f rf r e w h rewh |
---|---|
matchkey_str |
article:23795077:2020----::hsrnettesepneotosrtaeadlbleuaosneotmlrwhodtosnaecnetotntpgns |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QR |
publishDate |
2020 |
allfields |
10.1128/mSystems.00495-20 doi (DE-627)DOAJ048434299 (DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a DE-627 ger DE-627 rakwb eng QR1-502 Daniel Pletzer verfasserin aut The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. ppGpp relA spoT aprA global transcriptional regulator global regulatory networks Microbiology Travis M. Blimkie verfasserin aut Heidi Wolfmeier verfasserin aut Yicong Li verfasserin aut Arjun Baghela verfasserin aut Amy H. Y. Lee verfasserin aut Reza Falsafi verfasserin aut Robert E. W. Hancock verfasserin aut In mSystems American Society for Microbiology, 2017 5(2020), 4 (DE-627)84597212X (DE-600)2844333-0 23795077 nnns volume:5 year:2020 number:4 https://doi.org/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a kostenfrei https://journals.asm.org/doi/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/toc/2379-5077 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 |
spelling |
10.1128/mSystems.00495-20 doi (DE-627)DOAJ048434299 (DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a DE-627 ger DE-627 rakwb eng QR1-502 Daniel Pletzer verfasserin aut The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. ppGpp relA spoT aprA global transcriptional regulator global regulatory networks Microbiology Travis M. Blimkie verfasserin aut Heidi Wolfmeier verfasserin aut Yicong Li verfasserin aut Arjun Baghela verfasserin aut Amy H. Y. Lee verfasserin aut Reza Falsafi verfasserin aut Robert E. W. Hancock verfasserin aut In mSystems American Society for Microbiology, 2017 5(2020), 4 (DE-627)84597212X (DE-600)2844333-0 23795077 nnns volume:5 year:2020 number:4 https://doi.org/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a kostenfrei https://journals.asm.org/doi/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/toc/2379-5077 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 |
allfields_unstemmed |
10.1128/mSystems.00495-20 doi (DE-627)DOAJ048434299 (DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a DE-627 ger DE-627 rakwb eng QR1-502 Daniel Pletzer verfasserin aut The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. ppGpp relA spoT aprA global transcriptional regulator global regulatory networks Microbiology Travis M. Blimkie verfasserin aut Heidi Wolfmeier verfasserin aut Yicong Li verfasserin aut Arjun Baghela verfasserin aut Amy H. Y. Lee verfasserin aut Reza Falsafi verfasserin aut Robert E. W. Hancock verfasserin aut In mSystems American Society for Microbiology, 2017 5(2020), 4 (DE-627)84597212X (DE-600)2844333-0 23795077 nnns volume:5 year:2020 number:4 https://doi.org/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a kostenfrei https://journals.asm.org/doi/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/toc/2379-5077 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 |
allfieldsGer |
10.1128/mSystems.00495-20 doi (DE-627)DOAJ048434299 (DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a DE-627 ger DE-627 rakwb eng QR1-502 Daniel Pletzer verfasserin aut The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. ppGpp relA spoT aprA global transcriptional regulator global regulatory networks Microbiology Travis M. Blimkie verfasserin aut Heidi Wolfmeier verfasserin aut Yicong Li verfasserin aut Arjun Baghela verfasserin aut Amy H. Y. Lee verfasserin aut Reza Falsafi verfasserin aut Robert E. W. Hancock verfasserin aut In mSystems American Society for Microbiology, 2017 5(2020), 4 (DE-627)84597212X (DE-600)2844333-0 23795077 nnns volume:5 year:2020 number:4 https://doi.org/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a kostenfrei https://journals.asm.org/doi/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/toc/2379-5077 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 |
allfieldsSound |
10.1128/mSystems.00495-20 doi (DE-627)DOAJ048434299 (DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a DE-627 ger DE-627 rakwb eng QR1-502 Daniel Pletzer verfasserin aut The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. ppGpp relA spoT aprA global transcriptional regulator global regulatory networks Microbiology Travis M. Blimkie verfasserin aut Heidi Wolfmeier verfasserin aut Yicong Li verfasserin aut Arjun Baghela verfasserin aut Amy H. Y. Lee verfasserin aut Reza Falsafi verfasserin aut Robert E. W. Hancock verfasserin aut In mSystems American Society for Microbiology, 2017 5(2020), 4 (DE-627)84597212X (DE-600)2844333-0 23795077 nnns volume:5 year:2020 number:4 https://doi.org/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a kostenfrei https://journals.asm.org/doi/10.1128/mSystems.00495-20 kostenfrei https://doaj.org/toc/2379-5077 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 |
language |
English |
source |
In mSystems 5(2020), 4 volume:5 year:2020 number:4 |
sourceStr |
In mSystems 5(2020), 4 volume:5 year:2020 number:4 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ppGpp relA spoT aprA global transcriptional regulator global regulatory networks Microbiology |
isfreeaccess_bool |
true |
container_title |
mSystems |
authorswithroles_txt_mv |
Daniel Pletzer @@aut@@ Travis M. Blimkie @@aut@@ Heidi Wolfmeier @@aut@@ Yicong Li @@aut@@ Arjun Baghela @@aut@@ Amy H. Y. Lee @@aut@@ Reza Falsafi @@aut@@ Robert E. W. Hancock @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
84597212X |
id |
DOAJ048434299 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048434299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308134302.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/mSystems.00495-20</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048434299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daniel Pletzer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ppGpp</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spoT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aprA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global transcriptional regulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global regulatory networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Travis M. Blimkie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heidi Wolfmeier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yicong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arjun Baghela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amy H. Y. Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reza Falsafi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert E. W. Hancock</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">mSystems</subfield><subfield code="d">American Society for Microbiology, 2017</subfield><subfield code="g">5(2020), 4</subfield><subfield code="w">(DE-627)84597212X</subfield><subfield code="w">(DE-600)2844333-0</subfield><subfield code="x">23795077</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/mSystems.00495-20</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/mSystems.00495-20</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-5077</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Daniel Pletzer |
spellingShingle |
Daniel Pletzer misc QR1-502 misc ppGpp misc relA misc spoT misc aprA misc global transcriptional regulator misc global regulatory networks misc Microbiology The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< |
authorStr |
Daniel Pletzer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)84597212X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
23795077 |
topic_title |
QR1-502 The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< ppGpp relA spoT aprA global transcriptional regulator global regulatory networks |
topic |
misc QR1-502 misc ppGpp misc relA misc spoT misc aprA misc global transcriptional regulator misc global regulatory networks misc Microbiology |
topic_unstemmed |
misc QR1-502 misc ppGpp misc relA misc spoT misc aprA misc global transcriptional regulator misc global regulatory networks misc Microbiology |
topic_browse |
misc QR1-502 misc ppGpp misc relA misc spoT misc aprA misc global transcriptional regulator misc global regulatory networks misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
mSystems |
hierarchy_parent_id |
84597212X |
hierarchy_top_title |
mSystems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)84597212X (DE-600)2844333-0 |
title |
The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< |
ctrlnum |
(DE-627)DOAJ048434299 (DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a |
title_full |
The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< |
author_sort |
Daniel Pletzer |
journal |
mSystems |
journalStr |
mSystems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Daniel Pletzer Travis M. Blimkie Heidi Wolfmeier Yicong Li Arjun Baghela Amy H. Y. Lee Reza Falsafi Robert E. W. Hancock |
container_volume |
5 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Daniel Pletzer |
doi_str_mv |
10.1128/mSystems.00495-20 |
author2-role |
verfasserin |
title_sort |
stringent stress response controls proteases and global regulators under optimal growth conditions in <named-content content-type="genus-species"<pseudomonas aeruginosa</named-content< |
callnumber |
QR1-502 |
title_auth |
The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< |
abstract |
ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. |
abstractGer |
ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. |
abstract_unstemmed |
ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content< |
url |
https://doi.org/10.1128/mSystems.00495-20 https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a https://journals.asm.org/doi/10.1128/mSystems.00495-20 https://doaj.org/toc/2379-5077 |
remote_bool |
true |
author2 |
Travis M. Blimkie Heidi Wolfmeier Yicong Li Arjun Baghela Amy H. Y. Lee Reza Falsafi Robert E. W. Hancock |
author2Str |
Travis M. Blimkie Heidi Wolfmeier Yicong Li Arjun Baghela Amy H. Y. Lee Reza Falsafi Robert E. W. Hancock |
ppnlink |
84597212X |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1128/mSystems.00495-20 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T17:45:57.769Z |
_version_ |
1803580874710581248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048434299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308134302.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/mSystems.00495-20</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048434299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ94197f6636d04bce954a708fe7e6bc0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daniel Pletzer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in <named-content content-type="genus-species"<Pseudomonas aeruginosa</named-content<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to <1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as <30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that <30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ppGpp</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spoT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aprA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global transcriptional regulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global regulatory networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Travis M. Blimkie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heidi Wolfmeier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yicong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arjun Baghela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amy H. Y. Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Reza Falsafi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert E. W. Hancock</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">mSystems</subfield><subfield code="d">American Society for Microbiology, 2017</subfield><subfield code="g">5(2020), 4</subfield><subfield code="w">(DE-627)84597212X</subfield><subfield code="w">(DE-600)2844333-0</subfield><subfield code="x">23795077</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/mSystems.00495-20</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/94197f6636d04bce954a708fe7e6bc0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/mSystems.00495-20</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-5077</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield></datafield></record></collection>
|
score |
7.4005785 |