Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data
Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were develo...
Ausführliche Beschreibung
Autor*in: |
Linhong Wang [verfasserIn] Jingwei Li [verfasserIn] Yunhao Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 175584-175593 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:175584-175593 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2956652 |
---|
Katalog-ID: |
DOAJ048632392 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ048632392 | ||
003 | DE-627 | ||
005 | 20230501191257.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2956652 |2 doi | |
035 | |a (DE-627)DOAJ048632392 | ||
035 | |a (DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Linhong Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. | ||
650 | 4 | |a Driving fatigue | |
650 | 4 | |a recognition model | |
650 | 4 | |a R-R intervals | |
650 | 4 | |a conditional variance | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jingwei Li |e verfasserin |4 aut | |
700 | 0 | |a Yunhao Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 175584-175593 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:175584-175593 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2956652 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8917590/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 175584-175593 |
author_variant |
l w lw j l jl y w yw |
---|---|
matchkey_str |
article:21693536:2019----::oeignrcgiinfrvnftgettbsdn |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2956652 doi (DE-627)DOAJ048632392 (DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272 DE-627 ger DE-627 rakwb eng TK1-9971 Linhong Wang verfasserin aut Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. Driving fatigue recognition model R-R intervals conditional variance Electrical engineering. Electronics. Nuclear engineering Jingwei Li verfasserin aut Yunhao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 175584-175593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:175584-175593 https://doi.org/10.1109/ACCESS.2019.2956652 kostenfrei https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272 kostenfrei https://ieeexplore.ieee.org/document/8917590/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 175584-175593 |
spelling |
10.1109/ACCESS.2019.2956652 doi (DE-627)DOAJ048632392 (DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272 DE-627 ger DE-627 rakwb eng TK1-9971 Linhong Wang verfasserin aut Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. Driving fatigue recognition model R-R intervals conditional variance Electrical engineering. Electronics. Nuclear engineering Jingwei Li verfasserin aut Yunhao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 175584-175593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:175584-175593 https://doi.org/10.1109/ACCESS.2019.2956652 kostenfrei https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272 kostenfrei https://ieeexplore.ieee.org/document/8917590/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 175584-175593 |
allfields_unstemmed |
10.1109/ACCESS.2019.2956652 doi (DE-627)DOAJ048632392 (DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272 DE-627 ger DE-627 rakwb eng TK1-9971 Linhong Wang verfasserin aut Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. Driving fatigue recognition model R-R intervals conditional variance Electrical engineering. Electronics. Nuclear engineering Jingwei Li verfasserin aut Yunhao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 175584-175593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:175584-175593 https://doi.org/10.1109/ACCESS.2019.2956652 kostenfrei https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272 kostenfrei https://ieeexplore.ieee.org/document/8917590/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 175584-175593 |
allfieldsGer |
10.1109/ACCESS.2019.2956652 doi (DE-627)DOAJ048632392 (DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272 DE-627 ger DE-627 rakwb eng TK1-9971 Linhong Wang verfasserin aut Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. Driving fatigue recognition model R-R intervals conditional variance Electrical engineering. Electronics. Nuclear engineering Jingwei Li verfasserin aut Yunhao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 175584-175593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:175584-175593 https://doi.org/10.1109/ACCESS.2019.2956652 kostenfrei https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272 kostenfrei https://ieeexplore.ieee.org/document/8917590/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 175584-175593 |
allfieldsSound |
10.1109/ACCESS.2019.2956652 doi (DE-627)DOAJ048632392 (DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272 DE-627 ger DE-627 rakwb eng TK1-9971 Linhong Wang verfasserin aut Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. Driving fatigue recognition model R-R intervals conditional variance Electrical engineering. Electronics. Nuclear engineering Jingwei Li verfasserin aut Yunhao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 175584-175593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:175584-175593 https://doi.org/10.1109/ACCESS.2019.2956652 kostenfrei https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272 kostenfrei https://ieeexplore.ieee.org/document/8917590/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 175584-175593 |
language |
English |
source |
In IEEE Access 7(2019), Seite 175584-175593 volume:7 year:2019 pages:175584-175593 |
sourceStr |
In IEEE Access 7(2019), Seite 175584-175593 volume:7 year:2019 pages:175584-175593 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Driving fatigue recognition model R-R intervals conditional variance Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Linhong Wang @@aut@@ Jingwei Li @@aut@@ Yunhao Wang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ048632392 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048632392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501191257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2956652</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048632392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Linhong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driving fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recognition model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R-R intervals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional variance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingwei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunhao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 175584-175593</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:175584-175593</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2956652</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8917590/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">175584-175593</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Linhong Wang |
spellingShingle |
Linhong Wang misc TK1-9971 misc Driving fatigue misc recognition model misc R-R intervals misc conditional variance misc Electrical engineering. Electronics. Nuclear engineering Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data |
authorStr |
Linhong Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data Driving fatigue recognition model R-R intervals conditional variance |
topic |
misc TK1-9971 misc Driving fatigue misc recognition model misc R-R intervals misc conditional variance misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Driving fatigue misc recognition model misc R-R intervals misc conditional variance misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Driving fatigue misc recognition model misc R-R intervals misc conditional variance misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data |
ctrlnum |
(DE-627)DOAJ048632392 (DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272 |
title_full |
Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data |
author_sort |
Linhong Wang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
175584 |
author_browse |
Linhong Wang Jingwei Li Yunhao Wang |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Linhong Wang |
doi_str_mv |
10.1109/ACCESS.2019.2956652 |
author2-role |
verfasserin |
title_sort |
modeling and recognition of driving fatigue state based on r-r intervals of ecg data |
callnumber |
TK1-9971 |
title_auth |
Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data |
abstract |
Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. |
abstractGer |
Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. |
abstract_unstemmed |
Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data |
url |
https://doi.org/10.1109/ACCESS.2019.2956652 https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272 https://ieeexplore.ieee.org/document/8917590/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jingwei Li Yunhao Wang |
author2Str |
Jingwei Li Yunhao Wang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2956652 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T18:51:21.041Z |
_version_ |
1803584988557344768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048632392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501191257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2956652</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048632392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81a0746f145d4475b4252e62fb9a2272</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Linhong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Recognition of Driving Fatigue State Based on R-R Intervals of ECG Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Driving fatigue is an important contributing factor to traffic crashes. Developing a system that monitors the driver's fatigue level in real time and produces alarm signals when necessary, is important for the prevention of accidents. In the past decades, many recognition algorithms were developed based on multiple indicators. However, the relationship between R-R intervals of ECG and driving fatigue has not been studied. We develop a model to recognize the driving fatigue state based on R-R intervals. The cluster effect in the R-R interval sequence is found based on the stationary test and ARCH effect test. Then the AR (1)-GARCH (1, 1) model is developed to fit the time sequence of R-R intervals. The conditional variance of the residual R-R sequence is used to recognize whether there are changes in driving states. Field data was collected on the freeway between Baicheng and Changchun cities, where 10 drivers took part in the experiments. Validations are conducted to test the effectiveness of the developed model, and the results show that the recognitions of driving fatigue for the 10 drivers are correct in all cases. In addition, the recognition time delay is smaller than 5 minutes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driving fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recognition model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R-R intervals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional variance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingwei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunhao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 175584-175593</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:175584-175593</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2956652</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81a0746f145d4475b4252e62fb9a2272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8917590/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">175584-175593</subfield></datafield></record></collection>
|
score |
7.401087 |