Relationship between crop nutritional status, spectral measurements and Sentinel 2 images
In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pasture...
Ausführliche Beschreibung
Autor*in: |
Luis Joel Martínez M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomía Colombiana - Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016, 35(2017), 2, Seite 205-215 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2017 ; number:2 ; pages:205-215 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.15446/agron.colomb.v35n2.62875 |
---|
Katalog-ID: |
DOAJ048729272 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ048729272 | ||
003 | DE-627 | ||
005 | 20230502130258.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.15446/agron.colomb.v35n2.62875 |2 doi | |
035 | |a (DE-627)DOAJ048729272 | ||
035 | |a (DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK900-989 | |
100 | 0 | |a Luis Joel Martínez M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Relationship between crop nutritional status, spectral measurements and Sentinel 2 images |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. | ||
650 | 4 | |a spectral reflectance | |
650 | 4 | |a spectroradiometry | |
650 | 4 | |a crop nutrition. | |
653 | 0 | |a Plant ecology | |
773 | 0 | 8 | |i In |t Agronomía Colombiana |d Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016 |g 35(2017), 2, Seite 205-215 |w (DE-627)521469546 |w (DE-600)2260941-6 |x 23573732 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2017 |g number:2 |g pages:205-215 |
856 | 4 | 0 | |u https://doi.org/10.15446/agron.colomb.v35n2.62875 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7 |z kostenfrei |
856 | 4 | 0 | |u https://revistas.unal.edu.co/index.php/agrocol/article/view/62875 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0120-9965 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2357-3732 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 35 |j 2017 |e 2 |h 205-215 |
author_variant |
l j m m ljmm |
---|---|
matchkey_str |
article:23573732:2017----::eainhpewecontiinlttspcrlesrm |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QK |
publishDate |
2017 |
allfields |
10.15446/agron.colomb.v35n2.62875 doi (DE-627)DOAJ048729272 (DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7 DE-627 ger DE-627 rakwb eng QK900-989 Luis Joel Martínez M. verfasserin aut Relationship between crop nutritional status, spectral measurements and Sentinel 2 images 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. spectral reflectance spectroradiometry crop nutrition. Plant ecology In Agronomía Colombiana Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016 35(2017), 2, Seite 205-215 (DE-627)521469546 (DE-600)2260941-6 23573732 nnns volume:35 year:2017 number:2 pages:205-215 https://doi.org/10.15446/agron.colomb.v35n2.62875 kostenfrei https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7 kostenfrei https://revistas.unal.edu.co/index.php/agrocol/article/view/62875 kostenfrei https://doaj.org/toc/0120-9965 Journal toc kostenfrei https://doaj.org/toc/2357-3732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 35 2017 2 205-215 |
spelling |
10.15446/agron.colomb.v35n2.62875 doi (DE-627)DOAJ048729272 (DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7 DE-627 ger DE-627 rakwb eng QK900-989 Luis Joel Martínez M. verfasserin aut Relationship between crop nutritional status, spectral measurements and Sentinel 2 images 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. spectral reflectance spectroradiometry crop nutrition. Plant ecology In Agronomía Colombiana Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016 35(2017), 2, Seite 205-215 (DE-627)521469546 (DE-600)2260941-6 23573732 nnns volume:35 year:2017 number:2 pages:205-215 https://doi.org/10.15446/agron.colomb.v35n2.62875 kostenfrei https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7 kostenfrei https://revistas.unal.edu.co/index.php/agrocol/article/view/62875 kostenfrei https://doaj.org/toc/0120-9965 Journal toc kostenfrei https://doaj.org/toc/2357-3732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 35 2017 2 205-215 |
allfields_unstemmed |
10.15446/agron.colomb.v35n2.62875 doi (DE-627)DOAJ048729272 (DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7 DE-627 ger DE-627 rakwb eng QK900-989 Luis Joel Martínez M. verfasserin aut Relationship between crop nutritional status, spectral measurements and Sentinel 2 images 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. spectral reflectance spectroradiometry crop nutrition. Plant ecology In Agronomía Colombiana Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016 35(2017), 2, Seite 205-215 (DE-627)521469546 (DE-600)2260941-6 23573732 nnns volume:35 year:2017 number:2 pages:205-215 https://doi.org/10.15446/agron.colomb.v35n2.62875 kostenfrei https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7 kostenfrei https://revistas.unal.edu.co/index.php/agrocol/article/view/62875 kostenfrei https://doaj.org/toc/0120-9965 Journal toc kostenfrei https://doaj.org/toc/2357-3732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 35 2017 2 205-215 |
allfieldsGer |
10.15446/agron.colomb.v35n2.62875 doi (DE-627)DOAJ048729272 (DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7 DE-627 ger DE-627 rakwb eng QK900-989 Luis Joel Martínez M. verfasserin aut Relationship between crop nutritional status, spectral measurements and Sentinel 2 images 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. spectral reflectance spectroradiometry crop nutrition. Plant ecology In Agronomía Colombiana Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016 35(2017), 2, Seite 205-215 (DE-627)521469546 (DE-600)2260941-6 23573732 nnns volume:35 year:2017 number:2 pages:205-215 https://doi.org/10.15446/agron.colomb.v35n2.62875 kostenfrei https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7 kostenfrei https://revistas.unal.edu.co/index.php/agrocol/article/view/62875 kostenfrei https://doaj.org/toc/0120-9965 Journal toc kostenfrei https://doaj.org/toc/2357-3732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 35 2017 2 205-215 |
allfieldsSound |
10.15446/agron.colomb.v35n2.62875 doi (DE-627)DOAJ048729272 (DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7 DE-627 ger DE-627 rakwb eng QK900-989 Luis Joel Martínez M. verfasserin aut Relationship between crop nutritional status, spectral measurements and Sentinel 2 images 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. spectral reflectance spectroradiometry crop nutrition. Plant ecology In Agronomía Colombiana Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016 35(2017), 2, Seite 205-215 (DE-627)521469546 (DE-600)2260941-6 23573732 nnns volume:35 year:2017 number:2 pages:205-215 https://doi.org/10.15446/agron.colomb.v35n2.62875 kostenfrei https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7 kostenfrei https://revistas.unal.edu.co/index.php/agrocol/article/view/62875 kostenfrei https://doaj.org/toc/0120-9965 Journal toc kostenfrei https://doaj.org/toc/2357-3732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 35 2017 2 205-215 |
language |
English |
source |
In Agronomía Colombiana 35(2017), 2, Seite 205-215 volume:35 year:2017 number:2 pages:205-215 |
sourceStr |
In Agronomía Colombiana 35(2017), 2, Seite 205-215 volume:35 year:2017 number:2 pages:205-215 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
spectral reflectance spectroradiometry crop nutrition. Plant ecology |
isfreeaccess_bool |
true |
container_title |
Agronomía Colombiana |
authorswithroles_txt_mv |
Luis Joel Martínez M. @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
521469546 |
id |
DOAJ048729272 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048729272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502130258.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15446/agron.colomb.v35n2.62875</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048729272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luis Joel Martínez M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relationship between crop nutritional status, spectral measurements and Sentinel 2 images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral reflectance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectroradiometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop nutrition.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomía Colombiana</subfield><subfield code="d">Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016</subfield><subfield code="g">35(2017), 2, Seite 205-215</subfield><subfield code="w">(DE-627)521469546</subfield><subfield code="w">(DE-600)2260941-6</subfield><subfield code="x">23573732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:205-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15446/agron.colomb.v35n2.62875</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistas.unal.edu.co/index.php/agrocol/article/view/62875</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0120-9965</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2357-3732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">205-215</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Luis Joel Martínez M. |
spellingShingle |
Luis Joel Martínez M. misc QK900-989 misc spectral reflectance misc spectroradiometry misc crop nutrition. misc Plant ecology Relationship between crop nutritional status, spectral measurements and Sentinel 2 images |
authorStr |
Luis Joel Martínez M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)521469546 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK900-989 |
illustrated |
Not Illustrated |
issn |
23573732 |
topic_title |
QK900-989 Relationship between crop nutritional status, spectral measurements and Sentinel 2 images spectral reflectance spectroradiometry crop nutrition |
topic |
misc QK900-989 misc spectral reflectance misc spectroradiometry misc crop nutrition. misc Plant ecology |
topic_unstemmed |
misc QK900-989 misc spectral reflectance misc spectroradiometry misc crop nutrition. misc Plant ecology |
topic_browse |
misc QK900-989 misc spectral reflectance misc spectroradiometry misc crop nutrition. misc Plant ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomía Colombiana |
hierarchy_parent_id |
521469546 |
hierarchy_top_title |
Agronomía Colombiana |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)521469546 (DE-600)2260941-6 |
title |
Relationship between crop nutritional status, spectral measurements and Sentinel 2 images |
ctrlnum |
(DE-627)DOAJ048729272 (DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7 |
title_full |
Relationship between crop nutritional status, spectral measurements and Sentinel 2 images |
author_sort |
Luis Joel Martínez M. |
journal |
Agronomía Colombiana |
journalStr |
Agronomía Colombiana |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
205 |
author_browse |
Luis Joel Martínez M. |
container_volume |
35 |
class |
QK900-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Luis Joel Martínez M. |
doi_str_mv |
10.15446/agron.colomb.v35n2.62875 |
title_sort |
relationship between crop nutritional status, spectral measurements and sentinel 2 images |
callnumber |
QK900-989 |
title_auth |
Relationship between crop nutritional status, spectral measurements and Sentinel 2 images |
abstract |
In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. |
abstractGer |
In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. |
abstract_unstemmed |
In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Relationship between crop nutritional status, spectral measurements and Sentinel 2 images |
url |
https://doi.org/10.15446/agron.colomb.v35n2.62875 https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7 https://revistas.unal.edu.co/index.php/agrocol/article/view/62875 https://doaj.org/toc/0120-9965 https://doaj.org/toc/2357-3732 |
remote_bool |
true |
ppnlink |
521469546 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.15446/agron.colomb.v35n2.62875 |
callnumber-a |
QK900-989 |
up_date |
2024-07-03T19:22:01.467Z |
_version_ |
1803586918390169600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048729272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502130258.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15446/agron.colomb.v35n2.62875</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048729272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ42dd7798972843ef98a7c0da8ced52d7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luis Joel Martínez M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relationship between crop nutritional status, spectral measurements and Sentinel 2 images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to monitor the nutritional status of some crops based on plant spectroscopy and Sentinel 2 satellite images in Colombia, spectral reflectance data were taken between 350 and 2,500 nm with a FieldSpec 4 spectrometer in rubber, rice, sugar cane, maize, soybean, cashew, oil palm crops, pastures and natural savanna. Furthermore contents of mineral nutrients in leaves were determined. Several vegetation indexes and red edge positions were calculated using various methods from spectral data and Sentinel 2 satellite images and were correlated with leaf nutrient content. The results showed correlations between spectral indices, mainly those involving a spectral response in the red-edge range with the N, P, K and Cu although the best correlation coefficients were for N. First reflectance derivatives, transformations by the State Normal Variate and second reflectance derivatives showed great potential to monitor N content in crops. The green model index and the red-edge model computed from Sentinel 2 images had the best performance to monitor N content, although in the study area, presence of clouds affected the use of these images. The Sentinel 2 images allowed calculating some vegetation indexes obtained with other images, such as Landsat or SPOT, but additionally other indexes and calculations based on the bands of the red-edge, which is a great contribution to obtain more information of crops on their spatial and temporal variability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral reflectance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectroradiometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop nutrition.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomía Colombiana</subfield><subfield code="d">Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, 2016</subfield><subfield code="g">35(2017), 2, Seite 205-215</subfield><subfield code="w">(DE-627)521469546</subfield><subfield code="w">(DE-600)2260941-6</subfield><subfield code="x">23573732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:205-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15446/agron.colomb.v35n2.62875</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/42dd7798972843ef98a7c0da8ced52d7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistas.unal.edu.co/index.php/agrocol/article/view/62875</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0120-9965</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2357-3732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">205-215</subfield></datafield></record></collection>
|
score |
7.4018326 |