Human Fall Detection Using Machine Learning Methods: A Survey
Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection...
Ausführliche Beschreibung
Autor*in: |
Komal Singh [verfasserIn] Akshay Rajput [verfasserIn] Sachin Sharma [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Mathematical, Engineering and Management Sciences - Ram Arti Publishers, 2019, 5(2020), 1, Seite 161-180 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2020 ; number:1 ; pages:161-180 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.33889/IJMEMS.2020.5.1.014 |
---|
Katalog-ID: |
DOAJ048910007 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ048910007 | ||
003 | DE-627 | ||
005 | 20230503065313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.33889/IJMEMS.2020.5.1.014 |2 doi | |
035 | |a (DE-627)DOAJ048910007 | ||
035 | |a (DE-599)DOAJb0c4083741be44babbe27b827f267ba1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Komal Singh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Human Fall Detection Using Machine Learning Methods: A Survey |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. | ||
650 | 4 | |a hidden markov model | |
650 | 4 | |a gaussian distribution | |
650 | 4 | |a multilayer perceptron | |
650 | 4 | |a fuzzy rule | |
650 | 4 | |a deep learning. | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Akshay Rajput |e verfasserin |4 aut | |
700 | 0 | |a Sachin Sharma |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Mathematical, Engineering and Management Sciences |d Ram Arti Publishers, 2019 |g 5(2020), 1, Seite 161-180 |w (DE-627)1702066037 |w (DE-600)3028195-7 |x 24557749 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2020 |g number:1 |g pages:161-180 |
856 | 4 | 0 | |u https://doi.org/10.33889/IJMEMS.2020.5.1.014 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b0c4083741be44babbe27b827f267ba1 |z kostenfrei |
856 | 4 | 0 | |u https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2455-7749 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2455-7749 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2020 |e 1 |h 161-180 |
author_variant |
k s ks a r ar s s ss |
---|---|
matchkey_str |
article:24557749:2020----::uafldtcinsnmcieerig |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.33889/IJMEMS.2020.5.1.014 doi (DE-627)DOAJ048910007 (DE-599)DOAJb0c4083741be44babbe27b827f267ba1 DE-627 ger DE-627 rakwb eng QA1-939 Komal Singh verfasserin aut Human Fall Detection Using Machine Learning Methods: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. hidden markov model gaussian distribution multilayer perceptron fuzzy rule deep learning. Technology T Mathematics Akshay Rajput verfasserin aut Sachin Sharma verfasserin aut In International Journal of Mathematical, Engineering and Management Sciences Ram Arti Publishers, 2019 5(2020), 1, Seite 161-180 (DE-627)1702066037 (DE-600)3028195-7 24557749 nnns volume:5 year:2020 number:1 pages:161-180 https://doi.org/10.33889/IJMEMS.2020.5.1.014 kostenfrei https://doaj.org/article/b0c4083741be44babbe27b827f267ba1 kostenfrei https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 1 161-180 |
spelling |
10.33889/IJMEMS.2020.5.1.014 doi (DE-627)DOAJ048910007 (DE-599)DOAJb0c4083741be44babbe27b827f267ba1 DE-627 ger DE-627 rakwb eng QA1-939 Komal Singh verfasserin aut Human Fall Detection Using Machine Learning Methods: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. hidden markov model gaussian distribution multilayer perceptron fuzzy rule deep learning. Technology T Mathematics Akshay Rajput verfasserin aut Sachin Sharma verfasserin aut In International Journal of Mathematical, Engineering and Management Sciences Ram Arti Publishers, 2019 5(2020), 1, Seite 161-180 (DE-627)1702066037 (DE-600)3028195-7 24557749 nnns volume:5 year:2020 number:1 pages:161-180 https://doi.org/10.33889/IJMEMS.2020.5.1.014 kostenfrei https://doaj.org/article/b0c4083741be44babbe27b827f267ba1 kostenfrei https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 1 161-180 |
allfields_unstemmed |
10.33889/IJMEMS.2020.5.1.014 doi (DE-627)DOAJ048910007 (DE-599)DOAJb0c4083741be44babbe27b827f267ba1 DE-627 ger DE-627 rakwb eng QA1-939 Komal Singh verfasserin aut Human Fall Detection Using Machine Learning Methods: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. hidden markov model gaussian distribution multilayer perceptron fuzzy rule deep learning. Technology T Mathematics Akshay Rajput verfasserin aut Sachin Sharma verfasserin aut In International Journal of Mathematical, Engineering and Management Sciences Ram Arti Publishers, 2019 5(2020), 1, Seite 161-180 (DE-627)1702066037 (DE-600)3028195-7 24557749 nnns volume:5 year:2020 number:1 pages:161-180 https://doi.org/10.33889/IJMEMS.2020.5.1.014 kostenfrei https://doaj.org/article/b0c4083741be44babbe27b827f267ba1 kostenfrei https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 1 161-180 |
allfieldsGer |
10.33889/IJMEMS.2020.5.1.014 doi (DE-627)DOAJ048910007 (DE-599)DOAJb0c4083741be44babbe27b827f267ba1 DE-627 ger DE-627 rakwb eng QA1-939 Komal Singh verfasserin aut Human Fall Detection Using Machine Learning Methods: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. hidden markov model gaussian distribution multilayer perceptron fuzzy rule deep learning. Technology T Mathematics Akshay Rajput verfasserin aut Sachin Sharma verfasserin aut In International Journal of Mathematical, Engineering and Management Sciences Ram Arti Publishers, 2019 5(2020), 1, Seite 161-180 (DE-627)1702066037 (DE-600)3028195-7 24557749 nnns volume:5 year:2020 number:1 pages:161-180 https://doi.org/10.33889/IJMEMS.2020.5.1.014 kostenfrei https://doaj.org/article/b0c4083741be44babbe27b827f267ba1 kostenfrei https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 1 161-180 |
allfieldsSound |
10.33889/IJMEMS.2020.5.1.014 doi (DE-627)DOAJ048910007 (DE-599)DOAJb0c4083741be44babbe27b827f267ba1 DE-627 ger DE-627 rakwb eng QA1-939 Komal Singh verfasserin aut Human Fall Detection Using Machine Learning Methods: A Survey 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. hidden markov model gaussian distribution multilayer perceptron fuzzy rule deep learning. Technology T Mathematics Akshay Rajput verfasserin aut Sachin Sharma verfasserin aut In International Journal of Mathematical, Engineering and Management Sciences Ram Arti Publishers, 2019 5(2020), 1, Seite 161-180 (DE-627)1702066037 (DE-600)3028195-7 24557749 nnns volume:5 year:2020 number:1 pages:161-180 https://doi.org/10.33889/IJMEMS.2020.5.1.014 kostenfrei https://doaj.org/article/b0c4083741be44babbe27b827f267ba1 kostenfrei https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei https://doaj.org/toc/2455-7749 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 1 161-180 |
language |
English |
source |
In International Journal of Mathematical, Engineering and Management Sciences 5(2020), 1, Seite 161-180 volume:5 year:2020 number:1 pages:161-180 |
sourceStr |
In International Journal of Mathematical, Engineering and Management Sciences 5(2020), 1, Seite 161-180 volume:5 year:2020 number:1 pages:161-180 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hidden markov model gaussian distribution multilayer perceptron fuzzy rule deep learning. Technology T Mathematics |
isfreeaccess_bool |
true |
container_title |
International Journal of Mathematical, Engineering and Management Sciences |
authorswithroles_txt_mv |
Komal Singh @@aut@@ Akshay Rajput @@aut@@ Sachin Sharma @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1702066037 |
id |
DOAJ048910007 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048910007</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503065313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.33889/IJMEMS.2020.5.1.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048910007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb0c4083741be44babbe27b827f267ba1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Komal Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Human Fall Detection Using Machine Learning Methods: A Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hidden markov model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gaussian distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multilayer perceptron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy rule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akshay Rajput</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sachin Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Mathematical, Engineering and Management Sciences</subfield><subfield code="d">Ram Arti Publishers, 2019</subfield><subfield code="g">5(2020), 1, Seite 161-180</subfield><subfield code="w">(DE-627)1702066037</subfield><subfield code="w">(DE-600)3028195-7</subfield><subfield code="x">24557749</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:161-180</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.33889/IJMEMS.2020.5.1.014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b0c4083741be44babbe27b827f267ba1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2455-7749</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2455-7749</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">161-180</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Komal Singh |
spellingShingle |
Komal Singh misc QA1-939 misc hidden markov model misc gaussian distribution misc multilayer perceptron misc fuzzy rule misc deep learning. misc Technology misc T misc Mathematics Human Fall Detection Using Machine Learning Methods: A Survey |
authorStr |
Komal Singh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1702066037 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
24557749 |
topic_title |
QA1-939 Human Fall Detection Using Machine Learning Methods: A Survey hidden markov model gaussian distribution multilayer perceptron fuzzy rule deep learning |
topic |
misc QA1-939 misc hidden markov model misc gaussian distribution misc multilayer perceptron misc fuzzy rule misc deep learning. misc Technology misc T misc Mathematics |
topic_unstemmed |
misc QA1-939 misc hidden markov model misc gaussian distribution misc multilayer perceptron misc fuzzy rule misc deep learning. misc Technology misc T misc Mathematics |
topic_browse |
misc QA1-939 misc hidden markov model misc gaussian distribution misc multilayer perceptron misc fuzzy rule misc deep learning. misc Technology misc T misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Mathematical, Engineering and Management Sciences |
hierarchy_parent_id |
1702066037 |
hierarchy_top_title |
International Journal of Mathematical, Engineering and Management Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1702066037 (DE-600)3028195-7 |
title |
Human Fall Detection Using Machine Learning Methods: A Survey |
ctrlnum |
(DE-627)DOAJ048910007 (DE-599)DOAJb0c4083741be44babbe27b827f267ba1 |
title_full |
Human Fall Detection Using Machine Learning Methods: A Survey |
author_sort |
Komal Singh |
journal |
International Journal of Mathematical, Engineering and Management Sciences |
journalStr |
International Journal of Mathematical, Engineering and Management Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
161 |
author_browse |
Komal Singh Akshay Rajput Sachin Sharma |
container_volume |
5 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Komal Singh |
doi_str_mv |
10.33889/IJMEMS.2020.5.1.014 |
author2-role |
verfasserin |
title_sort |
human fall detection using machine learning methods: a survey |
callnumber |
QA1-939 |
title_auth |
Human Fall Detection Using Machine Learning Methods: A Survey |
abstract |
Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. |
abstractGer |
Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. |
abstract_unstemmed |
Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Human Fall Detection Using Machine Learning Methods: A Survey |
url |
https://doi.org/10.33889/IJMEMS.2020.5.1.014 https://doaj.org/article/b0c4083741be44babbe27b827f267ba1 https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf https://doaj.org/toc/2455-7749 |
remote_bool |
true |
author2 |
Akshay Rajput Sachin Sharma |
author2Str |
Akshay Rajput Sachin Sharma |
ppnlink |
1702066037 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.33889/IJMEMS.2020.5.1.014 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T20:21:16.044Z |
_version_ |
1803590645633253376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ048910007</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503065313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.33889/IJMEMS.2020.5.1.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ048910007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb0c4083741be44babbe27b827f267ba1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Komal Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Human Fall Detection Using Machine Learning Methods: A Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Human fall due to an accident can cause heavy injuries which may lead to a major medical issue for elderly people. With the introduction of new advanced technologies in the healthcare sector, an alarm system can be developed to detect a human fall. This paper summarizes various human fall detection methods and techniques, through observing people’s daily routine activities. A human fall detection system can be designed using one of these technologies: wearable based device, context-aware based and vision based methods. In this paper, we discuss different machine learning models designed to detect human fall using these techniques. These models have already been designed to discriminate fall from activities of daily living (ADL) like walking, moving, sitting, standing, lying and bending. This paper is aimed at analyzing the effectiveness of these machine learning algorithms for the detection of human fall.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hidden markov model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gaussian distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multilayer perceptron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy rule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akshay Rajput</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sachin Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Mathematical, Engineering and Management Sciences</subfield><subfield code="d">Ram Arti Publishers, 2019</subfield><subfield code="g">5(2020), 1, Seite 161-180</subfield><subfield code="w">(DE-627)1702066037</subfield><subfield code="w">(DE-600)3028195-7</subfield><subfield code="x">24557749</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:161-180</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.33889/IJMEMS.2020.5.1.014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b0c4083741be44babbe27b827f267ba1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ijmems.in/volumes/volume5/number1/14-IJMEMS-ECS-43-51-161180-2020.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2455-7749</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2455-7749</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">161-180</subfield></datafield></record></collection>
|
score |
7.3997517 |