Machine Vision based Intelligent Breast Cancer Detection
Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography imag...
Ausführliche Beschreibung
Autor*in: |
Nof Yasir [verfasserIn] Shahzad Anwar [verfasserIn] Muhammad Tahir Khan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Pakistan Journal of Engineering & Technology - The University of Lahore, 2021, 5(2022), 1 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2022 ; number:1 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.51846/vol5iss1pp1-10 |
---|
Katalog-ID: |
DOAJ04898311X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04898311X | ||
003 | DE-627 | ||
005 | 20230308140936.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.51846/vol5iss1pp1-10 |2 doi | |
035 | |a (DE-627)DOAJ04898311X | ||
035 | |a (DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Nof Yasir |e verfasserin |4 aut | |
245 | 1 | 0 | |a Machine Vision based Intelligent Breast Cancer Detection |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Biomedical Engineering | |
650 | 4 | |a Clinical image processing | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Shahzad Anwar |e verfasserin |4 aut | |
700 | 0 | |a Muhammad Tahir Khan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Pakistan Journal of Engineering & Technology |d The University of Lahore, 2021 |g 5(2022), 1 |w (DE-627)1760613614 |x 26642050 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2022 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.51846/vol5iss1pp1-10 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63 |z kostenfrei |
856 | 4 | 0 | |u https://hpej.net/journals/pakjet/article/view/1570 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2664-2042 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2664-2050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2022 |e 1 |
author_variant |
n y ny s a sa m t k mtk |
---|---|
matchkey_str |
article:26642050:2022----::ahnvsobsdnelgnbesc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.51846/vol5iss1pp1-10 doi (DE-627)DOAJ04898311X (DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63 DE-627 ger DE-627 rakwb eng Nof Yasir verfasserin aut Machine Vision based Intelligent Breast Cancer Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. Machine learning Biomedical Engineering Clinical image processing Technology T Shahzad Anwar verfasserin aut Muhammad Tahir Khan verfasserin aut In Pakistan Journal of Engineering & Technology The University of Lahore, 2021 5(2022), 1 (DE-627)1760613614 26642050 nnns volume:5 year:2022 number:1 https://doi.org/10.51846/vol5iss1pp1-10 kostenfrei https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63 kostenfrei https://hpej.net/journals/pakjet/article/view/1570 kostenfrei https://doaj.org/toc/2664-2042 Journal toc kostenfrei https://doaj.org/toc/2664-2050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2022 1 |
spelling |
10.51846/vol5iss1pp1-10 doi (DE-627)DOAJ04898311X (DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63 DE-627 ger DE-627 rakwb eng Nof Yasir verfasserin aut Machine Vision based Intelligent Breast Cancer Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. Machine learning Biomedical Engineering Clinical image processing Technology T Shahzad Anwar verfasserin aut Muhammad Tahir Khan verfasserin aut In Pakistan Journal of Engineering & Technology The University of Lahore, 2021 5(2022), 1 (DE-627)1760613614 26642050 nnns volume:5 year:2022 number:1 https://doi.org/10.51846/vol5iss1pp1-10 kostenfrei https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63 kostenfrei https://hpej.net/journals/pakjet/article/view/1570 kostenfrei https://doaj.org/toc/2664-2042 Journal toc kostenfrei https://doaj.org/toc/2664-2050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2022 1 |
allfields_unstemmed |
10.51846/vol5iss1pp1-10 doi (DE-627)DOAJ04898311X (DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63 DE-627 ger DE-627 rakwb eng Nof Yasir verfasserin aut Machine Vision based Intelligent Breast Cancer Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. Machine learning Biomedical Engineering Clinical image processing Technology T Shahzad Anwar verfasserin aut Muhammad Tahir Khan verfasserin aut In Pakistan Journal of Engineering & Technology The University of Lahore, 2021 5(2022), 1 (DE-627)1760613614 26642050 nnns volume:5 year:2022 number:1 https://doi.org/10.51846/vol5iss1pp1-10 kostenfrei https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63 kostenfrei https://hpej.net/journals/pakjet/article/view/1570 kostenfrei https://doaj.org/toc/2664-2042 Journal toc kostenfrei https://doaj.org/toc/2664-2050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2022 1 |
allfieldsGer |
10.51846/vol5iss1pp1-10 doi (DE-627)DOAJ04898311X (DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63 DE-627 ger DE-627 rakwb eng Nof Yasir verfasserin aut Machine Vision based Intelligent Breast Cancer Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. Machine learning Biomedical Engineering Clinical image processing Technology T Shahzad Anwar verfasserin aut Muhammad Tahir Khan verfasserin aut In Pakistan Journal of Engineering & Technology The University of Lahore, 2021 5(2022), 1 (DE-627)1760613614 26642050 nnns volume:5 year:2022 number:1 https://doi.org/10.51846/vol5iss1pp1-10 kostenfrei https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63 kostenfrei https://hpej.net/journals/pakjet/article/view/1570 kostenfrei https://doaj.org/toc/2664-2042 Journal toc kostenfrei https://doaj.org/toc/2664-2050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2022 1 |
allfieldsSound |
10.51846/vol5iss1pp1-10 doi (DE-627)DOAJ04898311X (DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63 DE-627 ger DE-627 rakwb eng Nof Yasir verfasserin aut Machine Vision based Intelligent Breast Cancer Detection 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. Machine learning Biomedical Engineering Clinical image processing Technology T Shahzad Anwar verfasserin aut Muhammad Tahir Khan verfasserin aut In Pakistan Journal of Engineering & Technology The University of Lahore, 2021 5(2022), 1 (DE-627)1760613614 26642050 nnns volume:5 year:2022 number:1 https://doi.org/10.51846/vol5iss1pp1-10 kostenfrei https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63 kostenfrei https://hpej.net/journals/pakjet/article/view/1570 kostenfrei https://doaj.org/toc/2664-2042 Journal toc kostenfrei https://doaj.org/toc/2664-2050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2022 1 |
language |
English |
source |
In Pakistan Journal of Engineering & Technology 5(2022), 1 volume:5 year:2022 number:1 |
sourceStr |
In Pakistan Journal of Engineering & Technology 5(2022), 1 volume:5 year:2022 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Machine learning Biomedical Engineering Clinical image processing Technology T |
isfreeaccess_bool |
true |
container_title |
Pakistan Journal of Engineering & Technology |
authorswithroles_txt_mv |
Nof Yasir @@aut@@ Shahzad Anwar @@aut@@ Muhammad Tahir Khan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1760613614 |
id |
DOAJ04898311X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04898311X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308140936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.51846/vol5iss1pp1-10</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04898311X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nof Yasir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Vision based Intelligent Breast Cancer Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical image processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shahzad Anwar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Tahir Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Pakistan Journal of Engineering & Technology</subfield><subfield code="d">The University of Lahore, 2021</subfield><subfield code="g">5(2022), 1</subfield><subfield code="w">(DE-627)1760613614</subfield><subfield code="x">26642050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.51846/vol5iss1pp1-10</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://hpej.net/journals/pakjet/article/view/1570</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2664-2042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2664-2050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
author |
Nof Yasir |
spellingShingle |
Nof Yasir misc Machine learning misc Biomedical Engineering misc Clinical image processing misc Technology misc T Machine Vision based Intelligent Breast Cancer Detection |
authorStr |
Nof Yasir |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760613614 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
26642050 |
topic_title |
Machine Vision based Intelligent Breast Cancer Detection Machine learning Biomedical Engineering Clinical image processing |
topic |
misc Machine learning misc Biomedical Engineering misc Clinical image processing misc Technology misc T |
topic_unstemmed |
misc Machine learning misc Biomedical Engineering misc Clinical image processing misc Technology misc T |
topic_browse |
misc Machine learning misc Biomedical Engineering misc Clinical image processing misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Pakistan Journal of Engineering & Technology |
hierarchy_parent_id |
1760613614 |
hierarchy_top_title |
Pakistan Journal of Engineering & Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760613614 |
title |
Machine Vision based Intelligent Breast Cancer Detection |
ctrlnum |
(DE-627)DOAJ04898311X (DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63 |
title_full |
Machine Vision based Intelligent Breast Cancer Detection |
author_sort |
Nof Yasir |
journal |
Pakistan Journal of Engineering & Technology |
journalStr |
Pakistan Journal of Engineering & Technology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Nof Yasir Shahzad Anwar Muhammad Tahir Khan |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Nof Yasir |
doi_str_mv |
10.51846/vol5iss1pp1-10 |
author2-role |
verfasserin |
title_sort |
machine vision based intelligent breast cancer detection |
title_auth |
Machine Vision based Intelligent Breast Cancer Detection |
abstract |
Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. |
abstractGer |
Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. |
abstract_unstemmed |
Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Machine Vision based Intelligent Breast Cancer Detection |
url |
https://doi.org/10.51846/vol5iss1pp1-10 https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63 https://hpej.net/journals/pakjet/article/view/1570 https://doaj.org/toc/2664-2042 https://doaj.org/toc/2664-2050 |
remote_bool |
true |
author2 |
Shahzad Anwar Muhammad Tahir Khan |
author2Str |
Shahzad Anwar Muhammad Tahir Khan |
ppnlink |
1760613614 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.51846/vol5iss1pp1-10 |
up_date |
2024-07-03T20:44:46.403Z |
_version_ |
1803592124496609280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04898311X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308140936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.51846/vol5iss1pp1-10</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04898311X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3d0beb3b2c8541e794cfa87aae9ece63</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nof Yasir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Vision based Intelligent Breast Cancer Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial intelligence, especially deep learning, has sparked a great deal of interest in bioinformatics, particularly complications in clinical imaging. It has achieved great success by helping the CAD system achieve high-precision results. Despite this, detecting breast cancer on mammography images is still considered a critical challenge. The work aims to decrease FPR and FNR and increase the value of MCC. To achieve this goal, two state-of-the-art object detection models are used, YOLOv5 and Mask RCNN.YOLOv5 detects and classifies the mass as benign or malignant. Due to the spatial limitations of YOLOV5, the original model is modified to achieve the desired results. Mask RCNN detects the edges of tumours invading the breast parenchyma and also detects the size of the tumours. The size of the tumours defines the stage of cancer. The model was trained on the INbreast dataset with YOLOv5+Mask RCNN. The performance of the proposed model was evaluated compared to the original version of YOLOv5. The proposed technique achieves higher performance with a lower False-positive rate of 0.05 and False-negative rate of 0.03 and a high MCC value of 92.02%. The experiments performed show that the accuracy of YOLOv5 in combination with Mask RCNN is 0.06 higher than that of YOLOv5 alone. Additionally, this work could help determine the patient's prognosis and allow physicians to be more accurate and predictable at early-stage breast cancer detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical image processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shahzad Anwar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Tahir Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Pakistan Journal of Engineering & Technology</subfield><subfield code="d">The University of Lahore, 2021</subfield><subfield code="g">5(2022), 1</subfield><subfield code="w">(DE-627)1760613614</subfield><subfield code="x">26642050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.51846/vol5iss1pp1-10</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3d0beb3b2c8541e794cfa87aae9ece63</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://hpej.net/journals/pakjet/article/view/1570</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2664-2042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2664-2050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.4019537 |