The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities
Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve hi...
Ausführliche Beschreibung
Autor*in: |
Wenxuan Zhao [verfasserIn] Tong Liu [verfasserIn] Yan Liu [verfasserIn] Hanyue Wang [verfasserIn] Ruili Wang [verfasserIn] Qianqian Ma [verfasserIn] Hegan Dong [verfasserIn] Xuyi Bi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Ecology and Evolution - BMC, 2021, 21(2021), 1, Seite 13 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2021 ; number:1 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1186/s12862-021-01908-4 |
---|
Katalog-ID: |
DOAJ04909677X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04909677X | ||
003 | DE-627 | ||
005 | 20230308141505.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12862-021-01908-4 |2 doi | |
035 | |a (DE-627)DOAJ04909677X | ||
035 | |a (DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
050 | 0 | |a QH359-425 | |
100 | 0 | |a Wenxuan Zhao |e verfasserin |4 aut | |
245 | 1 | 4 | |a The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. | ||
650 | 4 | |a Invasive mechanism | |
650 | 4 | |a Biomass allocation | |
650 | 4 | |a Maintenance | |
650 | 4 | |a Fitness | |
650 | 4 | |a Path analysis | |
653 | 0 | |a Ecology | |
653 | 0 | |a Evolution | |
700 | 0 | |a Tong Liu |e verfasserin |4 aut | |
700 | 0 | |a Yan Liu |e verfasserin |4 aut | |
700 | 0 | |a Hanyue Wang |e verfasserin |4 aut | |
700 | 0 | |a Ruili Wang |e verfasserin |4 aut | |
700 | 0 | |a Qianqian Ma |e verfasserin |4 aut | |
700 | 0 | |a Hegan Dong |e verfasserin |4 aut | |
700 | 0 | |a Xuyi Bi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Ecology and Evolution |d BMC, 2021 |g 21(2021), 1, Seite 13 |w (DE-627)1748428756 |x 27307182 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2021 |g number:1 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12862-021-01908-4 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12862-021-01908-4 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2730-7182 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2021 |e 1 |h 13 |
author_variant |
w z wz t l tl y l yl h w hw r w rw q m qm h d hd x b xb |
---|---|
matchkey_str |
article:27307182:2021----::hsgiiacoboasloainoouainrwhfhivsvseismrsareiiflana |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.1186/s12862-021-01908-4 doi (DE-627)DOAJ04909677X (DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37 DE-627 ger DE-627 rakwb eng QH540-549.5 QH359-425 Wenxuan Zhao verfasserin aut The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. Invasive mechanism Biomass allocation Maintenance Fitness Path analysis Ecology Evolution Tong Liu verfasserin aut Yan Liu verfasserin aut Hanyue Wang verfasserin aut Ruili Wang verfasserin aut Qianqian Ma verfasserin aut Hegan Dong verfasserin aut Xuyi Bi verfasserin aut In BMC Ecology and Evolution BMC, 2021 21(2021), 1, Seite 13 (DE-627)1748428756 27307182 nnns volume:21 year:2021 number:1 pages:13 https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37 kostenfrei https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/toc/2730-7182 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 13 |
spelling |
10.1186/s12862-021-01908-4 doi (DE-627)DOAJ04909677X (DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37 DE-627 ger DE-627 rakwb eng QH540-549.5 QH359-425 Wenxuan Zhao verfasserin aut The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. Invasive mechanism Biomass allocation Maintenance Fitness Path analysis Ecology Evolution Tong Liu verfasserin aut Yan Liu verfasserin aut Hanyue Wang verfasserin aut Ruili Wang verfasserin aut Qianqian Ma verfasserin aut Hegan Dong verfasserin aut Xuyi Bi verfasserin aut In BMC Ecology and Evolution BMC, 2021 21(2021), 1, Seite 13 (DE-627)1748428756 27307182 nnns volume:21 year:2021 number:1 pages:13 https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37 kostenfrei https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/toc/2730-7182 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 13 |
allfields_unstemmed |
10.1186/s12862-021-01908-4 doi (DE-627)DOAJ04909677X (DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37 DE-627 ger DE-627 rakwb eng QH540-549.5 QH359-425 Wenxuan Zhao verfasserin aut The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. Invasive mechanism Biomass allocation Maintenance Fitness Path analysis Ecology Evolution Tong Liu verfasserin aut Yan Liu verfasserin aut Hanyue Wang verfasserin aut Ruili Wang verfasserin aut Qianqian Ma verfasserin aut Hegan Dong verfasserin aut Xuyi Bi verfasserin aut In BMC Ecology and Evolution BMC, 2021 21(2021), 1, Seite 13 (DE-627)1748428756 27307182 nnns volume:21 year:2021 number:1 pages:13 https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37 kostenfrei https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/toc/2730-7182 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 13 |
allfieldsGer |
10.1186/s12862-021-01908-4 doi (DE-627)DOAJ04909677X (DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37 DE-627 ger DE-627 rakwb eng QH540-549.5 QH359-425 Wenxuan Zhao verfasserin aut The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. Invasive mechanism Biomass allocation Maintenance Fitness Path analysis Ecology Evolution Tong Liu verfasserin aut Yan Liu verfasserin aut Hanyue Wang verfasserin aut Ruili Wang verfasserin aut Qianqian Ma verfasserin aut Hegan Dong verfasserin aut Xuyi Bi verfasserin aut In BMC Ecology and Evolution BMC, 2021 21(2021), 1, Seite 13 (DE-627)1748428756 27307182 nnns volume:21 year:2021 number:1 pages:13 https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37 kostenfrei https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/toc/2730-7182 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 13 |
allfieldsSound |
10.1186/s12862-021-01908-4 doi (DE-627)DOAJ04909677X (DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37 DE-627 ger DE-627 rakwb eng QH540-549.5 QH359-425 Wenxuan Zhao verfasserin aut The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. Invasive mechanism Biomass allocation Maintenance Fitness Path analysis Ecology Evolution Tong Liu verfasserin aut Yan Liu verfasserin aut Hanyue Wang verfasserin aut Ruili Wang verfasserin aut Qianqian Ma verfasserin aut Hegan Dong verfasserin aut Xuyi Bi verfasserin aut In BMC Ecology and Evolution BMC, 2021 21(2021), 1, Seite 13 (DE-627)1748428756 27307182 nnns volume:21 year:2021 number:1 pages:13 https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37 kostenfrei https://doi.org/10.1186/s12862-021-01908-4 kostenfrei https://doaj.org/toc/2730-7182 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 1 13 |
language |
English |
source |
In BMC Ecology and Evolution 21(2021), 1, Seite 13 volume:21 year:2021 number:1 pages:13 |
sourceStr |
In BMC Ecology and Evolution 21(2021), 1, Seite 13 volume:21 year:2021 number:1 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Invasive mechanism Biomass allocation Maintenance Fitness Path analysis Ecology Evolution |
isfreeaccess_bool |
true |
container_title |
BMC Ecology and Evolution |
authorswithroles_txt_mv |
Wenxuan Zhao @@aut@@ Tong Liu @@aut@@ Yan Liu @@aut@@ Hanyue Wang @@aut@@ Ruili Wang @@aut@@ Qianqian Ma @@aut@@ Hegan Dong @@aut@@ Xuyi Bi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1748428756 |
id |
DOAJ04909677X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04909677X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308141505.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12862-021-01908-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04909677X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH359-425</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wenxuan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invasive mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maintenance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Evolution</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanyue Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruili Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qianqian Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hegan Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuyi Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Ecology and Evolution</subfield><subfield code="d">BMC, 2021</subfield><subfield code="g">21(2021), 1, Seite 13</subfield><subfield code="w">(DE-627)1748428756</subfield><subfield code="x">27307182</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12862-021-01908-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12862-021-01908-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2730-7182</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wenxuan Zhao |
spellingShingle |
Wenxuan Zhao misc QH540-549.5 misc QH359-425 misc Invasive mechanism misc Biomass allocation misc Maintenance misc Fitness misc Path analysis misc Ecology misc Evolution The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities |
authorStr |
Wenxuan Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1748428756 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
27307182 |
topic_title |
QH540-549.5 QH359-425 The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities Invasive mechanism Biomass allocation Maintenance Fitness Path analysis |
topic |
misc QH540-549.5 misc QH359-425 misc Invasive mechanism misc Biomass allocation misc Maintenance misc Fitness misc Path analysis misc Ecology misc Evolution |
topic_unstemmed |
misc QH540-549.5 misc QH359-425 misc Invasive mechanism misc Biomass allocation misc Maintenance misc Fitness misc Path analysis misc Ecology misc Evolution |
topic_browse |
misc QH540-549.5 misc QH359-425 misc Invasive mechanism misc Biomass allocation misc Maintenance misc Fitness misc Path analysis misc Ecology misc Evolution |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Ecology and Evolution |
hierarchy_parent_id |
1748428756 |
hierarchy_top_title |
BMC Ecology and Evolution |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1748428756 |
title |
The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities |
ctrlnum |
(DE-627)DOAJ04909677X (DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37 |
title_full |
The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities |
author_sort |
Wenxuan Zhao |
journal |
BMC Ecology and Evolution |
journalStr |
BMC Ecology and Evolution |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Wenxuan Zhao Tong Liu Yan Liu Hanyue Wang Ruili Wang Qianqian Ma Hegan Dong Xuyi Bi |
container_volume |
21 |
class |
QH540-549.5 QH359-425 |
format_se |
Elektronische Aufsätze |
author-letter |
Wenxuan Zhao |
doi_str_mv |
10.1186/s12862-021-01908-4 |
author2-role |
verfasserin |
title_sort |
significance of biomass allocation to population growth of the invasive species ambrosia artemisiifolia and ambrosia trifida with different densities |
callnumber |
QH540-549.5 |
title_auth |
The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities |
abstract |
Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. |
abstractGer |
Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. |
abstract_unstemmed |
Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities |
url |
https://doi.org/10.1186/s12862-021-01908-4 https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37 https://doaj.org/toc/2730-7182 |
remote_bool |
true |
author2 |
Tong Liu Yan Liu Hanyue Wang Ruili Wang Qianqian Ma Hegan Dong Xuyi Bi |
author2Str |
Tong Liu Yan Liu Hanyue Wang Ruili Wang Qianqian Ma Hegan Dong Xuyi Bi |
ppnlink |
1748428756 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12862-021-01908-4 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-03T21:24:18.311Z |
_version_ |
1803594611639189507 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04909677X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308141505.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12862-021-01908-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04909677X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ555f36907b494093a261fc1d6d9e3e37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH359-425</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wenxuan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The significance of biomass allocation to population growth of the invasive species Ambrosia artemisiifolia and Ambrosia trifida with different densities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Ambrosia artemisiifolia and Ambrosia trifida are globally distributed harmful and invasive weeds. High density clusters play an important role in their invasion. For these two species, the early settled populations are distributed at low densities, but they can rapidly achieve high population densities in a short period of time. However, their response to intraspecific competition to improve the fitness for rapid growth and maintenance of high population densities remains unclear. Therefore, to determine how these species form and maintain high population densities, individual biomass allocations patterns between different population densities (low and high), and plasticity during seedling, vegetative, breeding and mature stages were compared. In 2019, we harvested seeds at different population densities and compared them, and in 2020, we compared the number of regenerated plants across the two population densities. Results Most biomass was invested in the stems of both species. Ambrosia trifida had the highest stem biomass distribution, of up to 78%, and the phenotypic plasticity of the stem was the highest. Path analysis demonstrated that at low-density, total biomass was the biggest contributor to seed production, but stem and leaf biomass was the biggest contributors to high-density populations. The number of seeds produced per plant was high in low-density populations, while the seed number per unit area was huge in high-density populations. In the second year, the number of low-density populations increased significantly. A. artemisiifolia and A. trifida accounted for 75.6% and 68.4% of the mature populations, respectively. Conclusions High input to the stem is an important means to regulate the growth of the two species to cope with different densities. These two species can ensure reproductive success and produce appropriate seed numbers. Therefore, they can maintain a stable population over time and quickly form cluster advantages. In the management, early detection of both species and prevention of successful reproduction by chemical and mechanical means are necessary to stop cluster formation and spread.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invasive mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maintenance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Evolution</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanyue Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruili Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qianqian Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hegan Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuyi Bi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Ecology and Evolution</subfield><subfield code="d">BMC, 2021</subfield><subfield code="g">21(2021), 1, Seite 13</subfield><subfield code="w">(DE-627)1748428756</subfield><subfield code="x">27307182</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12862-021-01908-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/555f36907b494093a261fc1d6d9e3e37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12862-021-01908-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2730-7182</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.403078 |