Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading
In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation re...
Ausführliche Beschreibung
Autor*in: |
Junmeng Li [verfasserIn] Yanli Huang [verfasserIn] Zhongwei Chen [verfasserIn] Meng Li [verfasserIn] Ming Qiao [verfasserIn] Mehmet Kizil [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Minerals - MDPI AG, 2012, 8(2018), 6, p 244 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2018 ; number:6, p 244 |
Links: |
---|
DOI / URN: |
10.3390/min8060244 |
---|
Katalog-ID: |
DOAJ049168193 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ049168193 | ||
003 | DE-627 | ||
005 | 20230308141807.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/min8060244 |2 doi | |
035 | |a (DE-627)DOAJ049168193 | ||
035 | |a (DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE351-399.2 | |
100 | 0 | |a Junmeng Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. | ||
650 | 4 | |a crushing gangue backfilling material | |
650 | 4 | |a cyclic loading | |
650 | 4 | |a particle crushing | |
650 | 4 | |a acoustic emission | |
650 | 4 | |a solid backfilling coal mining | |
653 | 0 | |a Mineralogy | |
700 | 0 | |a Yanli Huang |e verfasserin |4 aut | |
700 | 0 | |a Zhongwei Chen |e verfasserin |4 aut | |
700 | 0 | |a Meng Li |e verfasserin |4 aut | |
700 | 0 | |a Ming Qiao |e verfasserin |4 aut | |
700 | 0 | |a Mehmet Kizil |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Minerals |d MDPI AG, 2012 |g 8(2018), 6, p 244 |w (DE-627)689132069 |w (DE-600)2655947-X |x 2075163X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2018 |g number:6, p 244 |
856 | 4 | 0 | |u https://doi.org/10.3390/min8060244 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2075-163X/8/6/244 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-163X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2018 |e 6, p 244 |
author_variant |
j l jl y h yh z c zc m l ml m q mq m k mk |
---|---|
matchkey_str |
article:2075163X:2018----::atcersighrceitcadcutcmsinatrsfrsigageaki |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QE |
publishDate |
2018 |
allfields |
10.3390/min8060244 doi (DE-627)DOAJ049168193 (DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99 DE-627 ger DE-627 rakwb eng QE351-399.2 Junmeng Li verfasserin aut Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. crushing gangue backfilling material cyclic loading particle crushing acoustic emission solid backfilling coal mining Mineralogy Yanli Huang verfasserin aut Zhongwei Chen verfasserin aut Meng Li verfasserin aut Ming Qiao verfasserin aut Mehmet Kizil verfasserin aut In Minerals MDPI AG, 2012 8(2018), 6, p 244 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:8 year:2018 number:6, p 244 https://doi.org/10.3390/min8060244 kostenfrei https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99 kostenfrei http://www.mdpi.com/2075-163X/8/6/244 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 6, p 244 |
spelling |
10.3390/min8060244 doi (DE-627)DOAJ049168193 (DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99 DE-627 ger DE-627 rakwb eng QE351-399.2 Junmeng Li verfasserin aut Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. crushing gangue backfilling material cyclic loading particle crushing acoustic emission solid backfilling coal mining Mineralogy Yanli Huang verfasserin aut Zhongwei Chen verfasserin aut Meng Li verfasserin aut Ming Qiao verfasserin aut Mehmet Kizil verfasserin aut In Minerals MDPI AG, 2012 8(2018), 6, p 244 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:8 year:2018 number:6, p 244 https://doi.org/10.3390/min8060244 kostenfrei https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99 kostenfrei http://www.mdpi.com/2075-163X/8/6/244 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 6, p 244 |
allfields_unstemmed |
10.3390/min8060244 doi (DE-627)DOAJ049168193 (DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99 DE-627 ger DE-627 rakwb eng QE351-399.2 Junmeng Li verfasserin aut Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. crushing gangue backfilling material cyclic loading particle crushing acoustic emission solid backfilling coal mining Mineralogy Yanli Huang verfasserin aut Zhongwei Chen verfasserin aut Meng Li verfasserin aut Ming Qiao verfasserin aut Mehmet Kizil verfasserin aut In Minerals MDPI AG, 2012 8(2018), 6, p 244 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:8 year:2018 number:6, p 244 https://doi.org/10.3390/min8060244 kostenfrei https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99 kostenfrei http://www.mdpi.com/2075-163X/8/6/244 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 6, p 244 |
allfieldsGer |
10.3390/min8060244 doi (DE-627)DOAJ049168193 (DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99 DE-627 ger DE-627 rakwb eng QE351-399.2 Junmeng Li verfasserin aut Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. crushing gangue backfilling material cyclic loading particle crushing acoustic emission solid backfilling coal mining Mineralogy Yanli Huang verfasserin aut Zhongwei Chen verfasserin aut Meng Li verfasserin aut Ming Qiao verfasserin aut Mehmet Kizil verfasserin aut In Minerals MDPI AG, 2012 8(2018), 6, p 244 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:8 year:2018 number:6, p 244 https://doi.org/10.3390/min8060244 kostenfrei https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99 kostenfrei http://www.mdpi.com/2075-163X/8/6/244 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 6, p 244 |
allfieldsSound |
10.3390/min8060244 doi (DE-627)DOAJ049168193 (DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99 DE-627 ger DE-627 rakwb eng QE351-399.2 Junmeng Li verfasserin aut Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. crushing gangue backfilling material cyclic loading particle crushing acoustic emission solid backfilling coal mining Mineralogy Yanli Huang verfasserin aut Zhongwei Chen verfasserin aut Meng Li verfasserin aut Ming Qiao verfasserin aut Mehmet Kizil verfasserin aut In Minerals MDPI AG, 2012 8(2018), 6, p 244 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:8 year:2018 number:6, p 244 https://doi.org/10.3390/min8060244 kostenfrei https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99 kostenfrei http://www.mdpi.com/2075-163X/8/6/244 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 6, p 244 |
language |
English |
source |
In Minerals 8(2018), 6, p 244 volume:8 year:2018 number:6, p 244 |
sourceStr |
In Minerals 8(2018), 6, p 244 volume:8 year:2018 number:6, p 244 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
crushing gangue backfilling material cyclic loading particle crushing acoustic emission solid backfilling coal mining Mineralogy |
isfreeaccess_bool |
true |
container_title |
Minerals |
authorswithroles_txt_mv |
Junmeng Li @@aut@@ Yanli Huang @@aut@@ Zhongwei Chen @@aut@@ Meng Li @@aut@@ Ming Qiao @@aut@@ Mehmet Kizil @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
689132069 |
id |
DOAJ049168193 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049168193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308141807.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min8060244</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049168193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junmeng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crushing gangue backfilling material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclic loading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle crushing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustic emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid backfilling coal mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanli Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongwei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehmet Kizil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">8(2018), 6, p 244</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6, p 244</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min8060244</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2075-163X/8/6/244</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">6, p 244</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Junmeng Li |
spellingShingle |
Junmeng Li misc QE351-399.2 misc crushing gangue backfilling material misc cyclic loading misc particle crushing misc acoustic emission misc solid backfilling coal mining misc Mineralogy Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading |
authorStr |
Junmeng Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689132069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE351-399 |
illustrated |
Not Illustrated |
issn |
2075163X |
topic_title |
QE351-399.2 Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading crushing gangue backfilling material cyclic loading particle crushing acoustic emission solid backfilling coal mining |
topic |
misc QE351-399.2 misc crushing gangue backfilling material misc cyclic loading misc particle crushing misc acoustic emission misc solid backfilling coal mining misc Mineralogy |
topic_unstemmed |
misc QE351-399.2 misc crushing gangue backfilling material misc cyclic loading misc particle crushing misc acoustic emission misc solid backfilling coal mining misc Mineralogy |
topic_browse |
misc QE351-399.2 misc crushing gangue backfilling material misc cyclic loading misc particle crushing misc acoustic emission misc solid backfilling coal mining misc Mineralogy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Minerals |
hierarchy_parent_id |
689132069 |
hierarchy_top_title |
Minerals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689132069 (DE-600)2655947-X |
title |
Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading |
ctrlnum |
(DE-627)DOAJ049168193 (DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99 |
title_full |
Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading |
author_sort |
Junmeng Li |
journal |
Minerals |
journalStr |
Minerals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Junmeng Li Yanli Huang Zhongwei Chen Meng Li Ming Qiao Mehmet Kizil |
container_volume |
8 |
class |
QE351-399.2 |
format_se |
Elektronische Aufsätze |
author-letter |
Junmeng Li |
doi_str_mv |
10.3390/min8060244 |
author2-role |
verfasserin |
title_sort |
particle-crushing characteristics and acoustic-emission patterns of crushing gangue backfilling material under cyclic loading |
callnumber |
QE351-399.2 |
title_auth |
Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading |
abstract |
In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. |
abstractGer |
In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. |
abstract_unstemmed |
In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 244 |
title_short |
Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading |
url |
https://doi.org/10.3390/min8060244 https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99 http://www.mdpi.com/2075-163X/8/6/244 https://doaj.org/toc/2075-163X |
remote_bool |
true |
author2 |
Yanli Huang Zhongwei Chen Meng Li Ming Qiao Mehmet Kizil |
author2Str |
Yanli Huang Zhongwei Chen Meng Li Ming Qiao Mehmet Kizil |
ppnlink |
689132069 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/min8060244 |
callnumber-a |
QE351-399.2 |
up_date |
2024-07-03T21:50:09.691Z |
_version_ |
1803596238362247168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049168193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308141807.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min8060244</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049168193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd4fc29a696a14ce684ded60d56c23b99</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Junmeng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In solid backfilling coal mining (SBCM), the crushed gangue backfilling material (CGBM) is generally compacted circularly by a compaction machine in order to reduce its compressibility. In this cyclic compaction process, the particles are crushed, which has a significant effect on the deformation resistance of CGBM. However, the deformation resistance of CGBM is critical for controlling overburden strata movement and ground surface subsidence. This study implemented an experimental approach to investigate the particle-crushing characteristics and acoustic-emission (AE) characteristics of CGBM during constant-amplitude cyclic loading (CACL). At the same time, the relationship between particle crushing and AE signals was established. The results showed that the gangue particles were generally in the shape of irregular convex polyhedrons with more edges and angles that were prone to breakage. It also demonstrated that both the crushing ratio (Bg) and the newly produced fine granule content increased with the cyclic loading times. The content of newly generated fine particles can reflect the particle-crushing conditions to a certain extent. What is more, it was found that the CGBM samples exhibited an apparent Felicity effect during CACL, and AE signals were the most active during the first loading cycle. The crushing ratio of CGBM was highly correlated to the AE signals, which indicated that AE signals can be used to reflect the particle-crushing situation of CGBM. This study is of great significance for obtaining an in-depth understanding of the mechanical properties of CGBM, as well as providing guidance for the engineering practice of SBCM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crushing gangue backfilling material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclic loading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle crushing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustic emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid backfilling coal mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanli Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongwei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehmet Kizil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">8(2018), 6, p 244</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6, p 244</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min8060244</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d4fc29a696a14ce684ded60d56c23b99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2075-163X/8/6/244</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">6, p 244</subfield></datafield></record></collection>
|
score |
7.4001513 |