Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging
For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cr...
Ausführliche Beschreibung
Autor*in: |
Jin Yang [verfasserIn] Jiake Li [verfasserIn] Xiaodong Chen [verfasserIn] Jiaqi Xi [verfasserIn] Huaiyu Cai [verfasserIn] Yi Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 11(2021), 18, p 8689 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:18, p 8689 |
Links: |
---|
DOI / URN: |
10.3390/app11188689 |
---|
Katalog-ID: |
DOAJ049314467 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ049314467 | ||
003 | DE-627 | ||
005 | 20240412161213.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app11188689 |2 doi | |
035 | |a (DE-627)DOAJ049314467 | ||
035 | |a (DE-599)DOAJd38b25704468403ca8c103fe9aced8c4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Jin Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. | ||
650 | 4 | |a GSC-CROSS | |
650 | 4 | |a adaptive beamforming | |
650 | 4 | |a minimum variance | |
650 | 4 | |a covariance matrix | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Jiake Li |e verfasserin |4 aut | |
700 | 0 | |a Xiaodong Chen |e verfasserin |4 aut | |
700 | 0 | |a Jiaqi Xi |e verfasserin |4 aut | |
700 | 0 | |a Huaiyu Cai |e verfasserin |4 aut | |
700 | 0 | |a Yi Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 11(2021), 18, p 8689 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:18, p 8689 |
856 | 4 | 0 | |u https://doi.org/10.3390/app11188689 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/11/18/8689 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 18, p 8689 |
author_variant |
j y jy j l jl x c xc j x jx h c hc y w yw |
---|---|
matchkey_str |
article:20763417:2021----::rssbpruevrgngnrlzdieoeaclremomnapido |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.3390/app11188689 doi (DE-627)DOAJ049314467 (DE-599)DOAJd38b25704468403ca8c103fe9aced8c4 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jin Yang verfasserin aut Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. GSC-CROSS adaptive beamforming minimum variance covariance matrix Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Jiake Li verfasserin aut Xiaodong Chen verfasserin aut Jiaqi Xi verfasserin aut Huaiyu Cai verfasserin aut Yi Wang verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 18, p 8689 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:18, p 8689 https://doi.org/10.3390/app11188689 kostenfrei https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4 kostenfrei https://www.mdpi.com/2076-3417/11/18/8689 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 18, p 8689 |
spelling |
10.3390/app11188689 doi (DE-627)DOAJ049314467 (DE-599)DOAJd38b25704468403ca8c103fe9aced8c4 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jin Yang verfasserin aut Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. GSC-CROSS adaptive beamforming minimum variance covariance matrix Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Jiake Li verfasserin aut Xiaodong Chen verfasserin aut Jiaqi Xi verfasserin aut Huaiyu Cai verfasserin aut Yi Wang verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 18, p 8689 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:18, p 8689 https://doi.org/10.3390/app11188689 kostenfrei https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4 kostenfrei https://www.mdpi.com/2076-3417/11/18/8689 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 18, p 8689 |
allfields_unstemmed |
10.3390/app11188689 doi (DE-627)DOAJ049314467 (DE-599)DOAJd38b25704468403ca8c103fe9aced8c4 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jin Yang verfasserin aut Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. GSC-CROSS adaptive beamforming minimum variance covariance matrix Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Jiake Li verfasserin aut Xiaodong Chen verfasserin aut Jiaqi Xi verfasserin aut Huaiyu Cai verfasserin aut Yi Wang verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 18, p 8689 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:18, p 8689 https://doi.org/10.3390/app11188689 kostenfrei https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4 kostenfrei https://www.mdpi.com/2076-3417/11/18/8689 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 18, p 8689 |
allfieldsGer |
10.3390/app11188689 doi (DE-627)DOAJ049314467 (DE-599)DOAJd38b25704468403ca8c103fe9aced8c4 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jin Yang verfasserin aut Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. GSC-CROSS adaptive beamforming minimum variance covariance matrix Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Jiake Li verfasserin aut Xiaodong Chen verfasserin aut Jiaqi Xi verfasserin aut Huaiyu Cai verfasserin aut Yi Wang verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 18, p 8689 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:18, p 8689 https://doi.org/10.3390/app11188689 kostenfrei https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4 kostenfrei https://www.mdpi.com/2076-3417/11/18/8689 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 18, p 8689 |
allfieldsSound |
10.3390/app11188689 doi (DE-627)DOAJ049314467 (DE-599)DOAJd38b25704468403ca8c103fe9aced8c4 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jin Yang verfasserin aut Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. GSC-CROSS adaptive beamforming minimum variance covariance matrix Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Jiake Li verfasserin aut Xiaodong Chen verfasserin aut Jiaqi Xi verfasserin aut Huaiyu Cai verfasserin aut Yi Wang verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 18, p 8689 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:18, p 8689 https://doi.org/10.3390/app11188689 kostenfrei https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4 kostenfrei https://www.mdpi.com/2076-3417/11/18/8689 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 18, p 8689 |
language |
English |
source |
In Applied Sciences 11(2021), 18, p 8689 volume:11 year:2021 number:18, p 8689 |
sourceStr |
In Applied Sciences 11(2021), 18, p 8689 volume:11 year:2021 number:18, p 8689 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
GSC-CROSS adaptive beamforming minimum variance covariance matrix Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Jin Yang @@aut@@ Jiake Li @@aut@@ Xiaodong Chen @@aut@@ Jiaqi Xi @@aut@@ Huaiyu Cai @@aut@@ Yi Wang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ049314467 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049314467</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412161213.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app11188689</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049314467</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd38b25704468403ca8c103fe9aced8c4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GSC-CROSS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive beamforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">minimum variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">covariance matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiake Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaodong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaqi Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaiyu Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 18, p 8689</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:18, p 8689</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app11188689</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/11/18/8689</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">18, p 8689</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jin Yang |
spellingShingle |
Jin Yang misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc GSC-CROSS misc adaptive beamforming misc minimum variance misc covariance matrix misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging |
authorStr |
Jin Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging GSC-CROSS adaptive beamforming minimum variance covariance matrix |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc GSC-CROSS misc adaptive beamforming misc minimum variance misc covariance matrix misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc GSC-CROSS misc adaptive beamforming misc minimum variance misc covariance matrix misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc GSC-CROSS misc adaptive beamforming misc minimum variance misc covariance matrix misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging |
ctrlnum |
(DE-627)DOAJ049314467 (DE-599)DOAJd38b25704468403ca8c103fe9aced8c4 |
title_full |
Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging |
author_sort |
Jin Yang |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Jin Yang Jiake Li Xiaodong Chen Jiaqi Xi Huaiyu Cai Yi Wang |
container_volume |
11 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jin Yang |
doi_str_mv |
10.3390/app11188689 |
author2-role |
verfasserin |
title_sort |
cross subaperture averaging generalized sidelobe canceler beamforming applied to medical ultrasound imaging |
callnumber |
TA1-2040 |
title_auth |
Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging |
abstract |
For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. |
abstractGer |
For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. |
abstract_unstemmed |
For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
18, p 8689 |
title_short |
Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging |
url |
https://doi.org/10.3390/app11188689 https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4 https://www.mdpi.com/2076-3417/11/18/8689 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Jiake Li Xiaodong Chen Jiaqi Xi Huaiyu Cai Yi Wang |
author2Str |
Jiake Li Xiaodong Chen Jiaqi Xi Huaiyu Cai Yi Wang |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app11188689 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:40:56.465Z |
_version_ |
1803599433137389568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049314467</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412161213.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app11188689</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049314467</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd38b25704468403ca8c103fe9aced8c4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cross Subaperture Averaging Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For adaptive ultrasound imaging, a reliable estimation of the covariance matrix has a decisive influence on the performance of beamformers. In this paper, we propose a new cross subaperture averaging generalized sidelobe canceler approach (GSC-CROSS) for medical ultrasound imaging, which uses the cross-covariance matrix instead of the traditional covariance matrix estimation. By using the more stable and accurate estimation of the covariance matrix, GSC-CROSS performs well in both lateral resolution and contrast. Experiments are conducted based on the simulated echo data of scattering points and a cyst target. Beamforming responses of scattering points show that GSC-CROSS can improve the lateral resolution by 76.9%, 68.8%, and 17.1% compared with delay-and-sum (DS), synthetic aperture (SA), and the traditional generalized sidelobe canceler (GSC), respectively. Also, imaging of the cyst target shows that compared with DS, SA, and GSC, the contrast increases by 101%, 32.6%, and 63.5%, respectively. Finally, the actual echo data collected from a medical ultrasonic imaging system is applied to reconstruct the image. Results show that the proposed method has a good performance on lateral resolution and contrast. Both the simulated and experimental data demonstrate the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GSC-CROSS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive beamforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">minimum variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">covariance matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiake Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaodong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaqi Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaiyu Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 18, p 8689</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:18, p 8689</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app11188689</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d38b25704468403ca8c103fe9aced8c4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/11/18/8689</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">18, p 8689</subfield></datafield></record></collection>
|
score |
7.402323 |