Stability analysis of fractional differential equations with unknown parameters
In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries ar...
Ausführliche Beschreibung
Autor*in: |
Mehmet Emir Koksal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nonlinear Analysis - Vilnius University Press, 2019, 24(2019), 2 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2019 ; number:2 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.15388/NA.2019.2.5 |
---|
Katalog-ID: |
DOAJ04953856X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ04953856X | ||
003 | DE-627 | ||
005 | 20230501191056.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.15388/NA.2019.2.5 |2 doi | |
035 | |a (DE-627)DOAJ04953856X | ||
035 | |a (DE-599)DOAJc64e4322c9954e9e90a71203fc853345 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Mehmet Emir Koksal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stability analysis of fractional differential equations with unknown parameters |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. | ||
650 | 4 | |a stability | |
650 | 4 | |a fractional differential equations | |
650 | 4 | |a fractional derivative | |
650 | 4 | |a unknown parameters | |
650 | 4 | |a parametric analysis | |
653 | 0 | |a Analysis | |
773 | 0 | 8 | |i In |t Nonlinear Analysis |d Vilnius University Press, 2019 |g 24(2019), 2 |w (DE-627)656866489 |w (DE-600)2604540-0 |x 23358963 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2019 |g number:2 |
856 | 4 | 0 | |u https://doi.org/10.15388/NA.2019.2.5 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c64e4322c9954e9e90a71203fc853345 |z kostenfrei |
856 | 4 | 0 | |u http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1392-5113 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2335-8963 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2019 |e 2 |
author_variant |
m e k mek |
---|---|
matchkey_str |
article:23358963:2019----::tbltaayiofatoadfeetaeutos |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QA |
publishDate |
2019 |
allfields |
10.15388/NA.2019.2.5 doi (DE-627)DOAJ04953856X (DE-599)DOAJc64e4322c9954e9e90a71203fc853345 DE-627 ger DE-627 rakwb eng QA299.6-433 Mehmet Emir Koksal verfasserin aut Stability analysis of fractional differential equations with unknown parameters 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. stability fractional differential equations fractional derivative unknown parameters parametric analysis Analysis In Nonlinear Analysis Vilnius University Press, 2019 24(2019), 2 (DE-627)656866489 (DE-600)2604540-0 23358963 nnns volume:24 year:2019 number:2 https://doi.org/10.15388/NA.2019.2.5 kostenfrei https://doaj.org/article/c64e4322c9954e9e90a71203fc853345 kostenfrei http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899 kostenfrei https://doaj.org/toc/1392-5113 Journal toc kostenfrei https://doaj.org/toc/2335-8963 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2019 2 |
spelling |
10.15388/NA.2019.2.5 doi (DE-627)DOAJ04953856X (DE-599)DOAJc64e4322c9954e9e90a71203fc853345 DE-627 ger DE-627 rakwb eng QA299.6-433 Mehmet Emir Koksal verfasserin aut Stability analysis of fractional differential equations with unknown parameters 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. stability fractional differential equations fractional derivative unknown parameters parametric analysis Analysis In Nonlinear Analysis Vilnius University Press, 2019 24(2019), 2 (DE-627)656866489 (DE-600)2604540-0 23358963 nnns volume:24 year:2019 number:2 https://doi.org/10.15388/NA.2019.2.5 kostenfrei https://doaj.org/article/c64e4322c9954e9e90a71203fc853345 kostenfrei http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899 kostenfrei https://doaj.org/toc/1392-5113 Journal toc kostenfrei https://doaj.org/toc/2335-8963 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2019 2 |
allfields_unstemmed |
10.15388/NA.2019.2.5 doi (DE-627)DOAJ04953856X (DE-599)DOAJc64e4322c9954e9e90a71203fc853345 DE-627 ger DE-627 rakwb eng QA299.6-433 Mehmet Emir Koksal verfasserin aut Stability analysis of fractional differential equations with unknown parameters 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. stability fractional differential equations fractional derivative unknown parameters parametric analysis Analysis In Nonlinear Analysis Vilnius University Press, 2019 24(2019), 2 (DE-627)656866489 (DE-600)2604540-0 23358963 nnns volume:24 year:2019 number:2 https://doi.org/10.15388/NA.2019.2.5 kostenfrei https://doaj.org/article/c64e4322c9954e9e90a71203fc853345 kostenfrei http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899 kostenfrei https://doaj.org/toc/1392-5113 Journal toc kostenfrei https://doaj.org/toc/2335-8963 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2019 2 |
allfieldsGer |
10.15388/NA.2019.2.5 doi (DE-627)DOAJ04953856X (DE-599)DOAJc64e4322c9954e9e90a71203fc853345 DE-627 ger DE-627 rakwb eng QA299.6-433 Mehmet Emir Koksal verfasserin aut Stability analysis of fractional differential equations with unknown parameters 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. stability fractional differential equations fractional derivative unknown parameters parametric analysis Analysis In Nonlinear Analysis Vilnius University Press, 2019 24(2019), 2 (DE-627)656866489 (DE-600)2604540-0 23358963 nnns volume:24 year:2019 number:2 https://doi.org/10.15388/NA.2019.2.5 kostenfrei https://doaj.org/article/c64e4322c9954e9e90a71203fc853345 kostenfrei http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899 kostenfrei https://doaj.org/toc/1392-5113 Journal toc kostenfrei https://doaj.org/toc/2335-8963 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2019 2 |
allfieldsSound |
10.15388/NA.2019.2.5 doi (DE-627)DOAJ04953856X (DE-599)DOAJc64e4322c9954e9e90a71203fc853345 DE-627 ger DE-627 rakwb eng QA299.6-433 Mehmet Emir Koksal verfasserin aut Stability analysis of fractional differential equations with unknown parameters 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. stability fractional differential equations fractional derivative unknown parameters parametric analysis Analysis In Nonlinear Analysis Vilnius University Press, 2019 24(2019), 2 (DE-627)656866489 (DE-600)2604540-0 23358963 nnns volume:24 year:2019 number:2 https://doi.org/10.15388/NA.2019.2.5 kostenfrei https://doaj.org/article/c64e4322c9954e9e90a71203fc853345 kostenfrei http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899 kostenfrei https://doaj.org/toc/1392-5113 Journal toc kostenfrei https://doaj.org/toc/2335-8963 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2019 2 |
language |
English |
source |
In Nonlinear Analysis 24(2019), 2 volume:24 year:2019 number:2 |
sourceStr |
In Nonlinear Analysis 24(2019), 2 volume:24 year:2019 number:2 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stability fractional differential equations fractional derivative unknown parameters parametric analysis Analysis |
isfreeaccess_bool |
true |
container_title |
Nonlinear Analysis |
authorswithroles_txt_mv |
Mehmet Emir Koksal @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
656866489 |
id |
DOAJ04953856X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04953856X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501191056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15388/NA.2019.2.5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04953856X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc64e4322c9954e9e90a71203fc853345</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mehmet Emir Koksal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of fractional differential equations with unknown parameters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unknown parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nonlinear Analysis</subfield><subfield code="d">Vilnius University Press, 2019</subfield><subfield code="g">24(2019), 2</subfield><subfield code="w">(DE-627)656866489</subfield><subfield code="w">(DE-600)2604540-0</subfield><subfield code="x">23358963</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15388/NA.2019.2.5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c64e4322c9954e9e90a71203fc853345</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1392-5113</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2335-8963</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mehmet Emir Koksal |
spellingShingle |
Mehmet Emir Koksal misc QA299.6-433 misc stability misc fractional differential equations misc fractional derivative misc unknown parameters misc parametric analysis misc Analysis Stability analysis of fractional differential equations with unknown parameters |
authorStr |
Mehmet Emir Koksal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)656866489 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
23358963 |
topic_title |
QA299.6-433 Stability analysis of fractional differential equations with unknown parameters stability fractional differential equations fractional derivative unknown parameters parametric analysis |
topic |
misc QA299.6-433 misc stability misc fractional differential equations misc fractional derivative misc unknown parameters misc parametric analysis misc Analysis |
topic_unstemmed |
misc QA299.6-433 misc stability misc fractional differential equations misc fractional derivative misc unknown parameters misc parametric analysis misc Analysis |
topic_browse |
misc QA299.6-433 misc stability misc fractional differential equations misc fractional derivative misc unknown parameters misc parametric analysis misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nonlinear Analysis |
hierarchy_parent_id |
656866489 |
hierarchy_top_title |
Nonlinear Analysis |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)656866489 (DE-600)2604540-0 |
title |
Stability analysis of fractional differential equations with unknown parameters |
ctrlnum |
(DE-627)DOAJ04953856X (DE-599)DOAJc64e4322c9954e9e90a71203fc853345 |
title_full |
Stability analysis of fractional differential equations with unknown parameters |
author_sort |
Mehmet Emir Koksal |
journal |
Nonlinear Analysis |
journalStr |
Nonlinear Analysis |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Mehmet Emir Koksal |
container_volume |
24 |
class |
QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Mehmet Emir Koksal |
doi_str_mv |
10.15388/NA.2019.2.5 |
title_sort |
stability analysis of fractional differential equations with unknown parameters |
callnumber |
QA299.6-433 |
title_auth |
Stability analysis of fractional differential equations with unknown parameters |
abstract |
In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. |
abstractGer |
In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. |
abstract_unstemmed |
In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Stability analysis of fractional differential equations with unknown parameters |
url |
https://doi.org/10.15388/NA.2019.2.5 https://doaj.org/article/c64e4322c9954e9e90a71203fc853345 http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899 https://doaj.org/toc/1392-5113 https://doaj.org/toc/2335-8963 |
remote_bool |
true |
ppnlink |
656866489 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.15388/NA.2019.2.5 |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-03T23:47:39.007Z |
_version_ |
1803603630105821184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ04953856X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501191056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15388/NA.2019.2.5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ04953856X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc64e4322c9954e9e90a71203fc853345</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mehmet Emir Koksal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of fractional differential equations with unknown parameters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unknown parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nonlinear Analysis</subfield><subfield code="d">Vilnius University Press, 2019</subfield><subfield code="g">24(2019), 2</subfield><subfield code="w">(DE-627)656866489</subfield><subfield code="w">(DE-600)2604540-0</subfield><subfield code="x">23358963</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15388/NA.2019.2.5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c64e4322c9954e9e90a71203fc853345</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12899</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1392-5113</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2335-8963</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
score |
7.400483 |