Dynamics Modeling of a Wave Glider With Optimal Wing Structure
The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore...
Ausführliche Beschreibung
Autor*in: |
Jiawang Chen [verfasserIn] Yongqiang Ge [verfasserIn] Chaoling Yao [verfasserIn] Binghuan Zheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 6(2018), Seite 71555-71565 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; pages:71555-71565 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2018.2873709 |
---|
Katalog-ID: |
DOAJ049725912 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ049725912 | ||
003 | DE-627 | ||
005 | 20230308144905.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2018.2873709 |2 doi | |
035 | |a (DE-627)DOAJ049725912 | ||
035 | |a (DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jiawang Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamics Modeling of a Wave Glider With Optimal Wing Structure |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. | ||
650 | 4 | |a Wave glider | |
650 | 4 | |a kinetic model | |
650 | 4 | |a marine vehicles | |
650 | 4 | |a catamaran structure | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Yongqiang Ge |e verfasserin |4 aut | |
700 | 0 | |a Chaoling Yao |e verfasserin |4 aut | |
700 | 0 | |a Binghuan Zheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 6(2018), Seite 71555-71565 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g pages:71555-71565 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2018.2873709 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8485686/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |h 71555-71565 |
author_variant |
j c jc y g yg c y cy b z bz |
---|---|
matchkey_str |
article:21693536:2018----::yaisoeigfwvgiewtotm |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1109/ACCESS.2018.2873709 doi (DE-627)DOAJ049725912 (DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae DE-627 ger DE-627 rakwb eng TK1-9971 Jiawang Chen verfasserin aut Dynamics Modeling of a Wave Glider With Optimal Wing Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. Wave glider kinetic model marine vehicles catamaran structure Electrical engineering. Electronics. Nuclear engineering Yongqiang Ge verfasserin aut Chaoling Yao verfasserin aut Binghuan Zheng verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 71555-71565 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:71555-71565 https://doi.org/10.1109/ACCESS.2018.2873709 kostenfrei https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae kostenfrei https://ieeexplore.ieee.org/document/8485686/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 71555-71565 |
spelling |
10.1109/ACCESS.2018.2873709 doi (DE-627)DOAJ049725912 (DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae DE-627 ger DE-627 rakwb eng TK1-9971 Jiawang Chen verfasserin aut Dynamics Modeling of a Wave Glider With Optimal Wing Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. Wave glider kinetic model marine vehicles catamaran structure Electrical engineering. Electronics. Nuclear engineering Yongqiang Ge verfasserin aut Chaoling Yao verfasserin aut Binghuan Zheng verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 71555-71565 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:71555-71565 https://doi.org/10.1109/ACCESS.2018.2873709 kostenfrei https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae kostenfrei https://ieeexplore.ieee.org/document/8485686/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 71555-71565 |
allfields_unstemmed |
10.1109/ACCESS.2018.2873709 doi (DE-627)DOAJ049725912 (DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae DE-627 ger DE-627 rakwb eng TK1-9971 Jiawang Chen verfasserin aut Dynamics Modeling of a Wave Glider With Optimal Wing Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. Wave glider kinetic model marine vehicles catamaran structure Electrical engineering. Electronics. Nuclear engineering Yongqiang Ge verfasserin aut Chaoling Yao verfasserin aut Binghuan Zheng verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 71555-71565 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:71555-71565 https://doi.org/10.1109/ACCESS.2018.2873709 kostenfrei https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae kostenfrei https://ieeexplore.ieee.org/document/8485686/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 71555-71565 |
allfieldsGer |
10.1109/ACCESS.2018.2873709 doi (DE-627)DOAJ049725912 (DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae DE-627 ger DE-627 rakwb eng TK1-9971 Jiawang Chen verfasserin aut Dynamics Modeling of a Wave Glider With Optimal Wing Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. Wave glider kinetic model marine vehicles catamaran structure Electrical engineering. Electronics. Nuclear engineering Yongqiang Ge verfasserin aut Chaoling Yao verfasserin aut Binghuan Zheng verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 71555-71565 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:71555-71565 https://doi.org/10.1109/ACCESS.2018.2873709 kostenfrei https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae kostenfrei https://ieeexplore.ieee.org/document/8485686/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 71555-71565 |
allfieldsSound |
10.1109/ACCESS.2018.2873709 doi (DE-627)DOAJ049725912 (DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae DE-627 ger DE-627 rakwb eng TK1-9971 Jiawang Chen verfasserin aut Dynamics Modeling of a Wave Glider With Optimal Wing Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. Wave glider kinetic model marine vehicles catamaran structure Electrical engineering. Electronics. Nuclear engineering Yongqiang Ge verfasserin aut Chaoling Yao verfasserin aut Binghuan Zheng verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 71555-71565 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:71555-71565 https://doi.org/10.1109/ACCESS.2018.2873709 kostenfrei https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae kostenfrei https://ieeexplore.ieee.org/document/8485686/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 71555-71565 |
language |
English |
source |
In IEEE Access 6(2018), Seite 71555-71565 volume:6 year:2018 pages:71555-71565 |
sourceStr |
In IEEE Access 6(2018), Seite 71555-71565 volume:6 year:2018 pages:71555-71565 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wave glider kinetic model marine vehicles catamaran structure Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jiawang Chen @@aut@@ Yongqiang Ge @@aut@@ Chaoling Yao @@aut@@ Binghuan Zheng @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ049725912 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049725912</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308144905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2873709</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049725912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiawang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics Modeling of a Wave Glider With Optimal Wing Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave glider</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinetic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marine vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">catamaran structure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongqiang Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaoling Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binghuan Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 71555-71565</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:71555-71565</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2873709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8485686/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">71555-71565</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiawang Chen |
spellingShingle |
Jiawang Chen misc TK1-9971 misc Wave glider misc kinetic model misc marine vehicles misc catamaran structure misc Electrical engineering. Electronics. Nuclear engineering Dynamics Modeling of a Wave Glider With Optimal Wing Structure |
authorStr |
Jiawang Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Dynamics Modeling of a Wave Glider With Optimal Wing Structure Wave glider kinetic model marine vehicles catamaran structure |
topic |
misc TK1-9971 misc Wave glider misc kinetic model misc marine vehicles misc catamaran structure misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Wave glider misc kinetic model misc marine vehicles misc catamaran structure misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Wave glider misc kinetic model misc marine vehicles misc catamaran structure misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Dynamics Modeling of a Wave Glider With Optimal Wing Structure |
ctrlnum |
(DE-627)DOAJ049725912 (DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae |
title_full |
Dynamics Modeling of a Wave Glider With Optimal Wing Structure |
author_sort |
Jiawang Chen |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
71555 |
author_browse |
Jiawang Chen Yongqiang Ge Chaoling Yao Binghuan Zheng |
container_volume |
6 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiawang Chen |
doi_str_mv |
10.1109/ACCESS.2018.2873709 |
author2-role |
verfasserin |
title_sort |
dynamics modeling of a wave glider with optimal wing structure |
callnumber |
TK1-9971 |
title_auth |
Dynamics Modeling of a Wave Glider With Optimal Wing Structure |
abstract |
The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. |
abstractGer |
The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. |
abstract_unstemmed |
The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Dynamics Modeling of a Wave Glider With Optimal Wing Structure |
url |
https://doi.org/10.1109/ACCESS.2018.2873709 https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae https://ieeexplore.ieee.org/document/8485686/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Yongqiang Ge Chaoling Yao Binghuan Zheng |
author2Str |
Yongqiang Ge Chaoling Yao Binghuan Zheng |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2018.2873709 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:33:38.444Z |
_version_ |
1803606523584184320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049725912</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308144905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2873709</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049725912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJceb8c9a42bfa4a21b1ac22d0319893ae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiawang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics Modeling of a Wave Glider With Optimal Wing Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The wave glider is a new concept marine robot that can make use of wave energy to obtain thrust. Differ from the traditional unmanned vehicle, the wave glider consists of the floating body, the connecting tether, and the submerge glider. It can be regarded as a special catamaran structure. Therefore, the conventional kinetic models of the unmanned vehicle are inapplicable to the wave glider. In this paper, we propose a non-linear kinetic model of wave glider of six degrees of freedom based on three reference coordinate frames. The calculating formula between the vertical liquid velocity and the system advance speed is derived by using the kinetic model. A method to design a glider wing structure under fixed wave speed in vertical direction was also presented. On the basis of the static stress analysis of the Glider wings, we compare different factors influencing the advance speed and optimize them by comparing the simulation results with the calculation results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave glider</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinetic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marine vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">catamaran structure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongqiang Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaoling Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binghuan Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 71555-71565</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:71555-71565</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2873709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ceb8c9a42bfa4a21b1ac22d0319893ae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8485686/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">71555-71565</subfield></datafield></record></collection>
|
score |
7.3995285 |