A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application
This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the...
Ausführliche Beschreibung
Autor*in: |
Peng Li [verfasserIn] Wei Dang [verfasserIn] Taichun Qin [verfasserIn] Zeming Zhang [verfasserIn] Congmin Lv [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 23430-23441 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:23430-23441 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2899624 |
---|
Katalog-ID: |
DOAJ049808788 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ049808788 | ||
003 | DE-627 | ||
005 | 20230308145258.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2899624 |2 doi | |
035 | |a (DE-627)DOAJ049808788 | ||
035 | |a (DE-599)DOAJ00c91a3a567541cea4223e022e314cc4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Peng Li |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. | ||
650 | 4 | |a Semiconductor device modeling | |
650 | 4 | |a degradation | |
650 | 4 | |a reliability engineering | |
650 | 4 | |a space radiation | |
650 | 4 | |a uncertainty | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Wei Dang |e verfasserin |4 aut | |
700 | 0 | |a Taichun Qin |e verfasserin |4 aut | |
700 | 0 | |a Zeming Zhang |e verfasserin |4 aut | |
700 | 0 | |a Congmin Lv |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 23430-23441 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:23430-23441 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2899624 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/00c91a3a567541cea4223e022e314cc4 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8642871/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 23430-23441 |
author_variant |
p l pl w d wd t q tq z z zz c l cl |
---|---|
matchkey_str |
article:21693536:2019----::cmeigikoeorlaiiynlssonnbsds |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2899624 doi (DE-627)DOAJ049808788 (DE-599)DOAJ00c91a3a567541cea4223e022e314cc4 DE-627 ger DE-627 rakwb eng TK1-9971 Peng Li verfasserin aut A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. Semiconductor device modeling degradation reliability engineering space radiation uncertainty Electrical engineering. Electronics. Nuclear engineering Wei Dang verfasserin aut Taichun Qin verfasserin aut Zeming Zhang verfasserin aut Congmin Lv verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 23430-23441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:23430-23441 https://doi.org/10.1109/ACCESS.2019.2899624 kostenfrei https://doaj.org/article/00c91a3a567541cea4223e022e314cc4 kostenfrei https://ieeexplore.ieee.org/document/8642871/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 23430-23441 |
spelling |
10.1109/ACCESS.2019.2899624 doi (DE-627)DOAJ049808788 (DE-599)DOAJ00c91a3a567541cea4223e022e314cc4 DE-627 ger DE-627 rakwb eng TK1-9971 Peng Li verfasserin aut A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. Semiconductor device modeling degradation reliability engineering space radiation uncertainty Electrical engineering. Electronics. Nuclear engineering Wei Dang verfasserin aut Taichun Qin verfasserin aut Zeming Zhang verfasserin aut Congmin Lv verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 23430-23441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:23430-23441 https://doi.org/10.1109/ACCESS.2019.2899624 kostenfrei https://doaj.org/article/00c91a3a567541cea4223e022e314cc4 kostenfrei https://ieeexplore.ieee.org/document/8642871/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 23430-23441 |
allfields_unstemmed |
10.1109/ACCESS.2019.2899624 doi (DE-627)DOAJ049808788 (DE-599)DOAJ00c91a3a567541cea4223e022e314cc4 DE-627 ger DE-627 rakwb eng TK1-9971 Peng Li verfasserin aut A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. Semiconductor device modeling degradation reliability engineering space radiation uncertainty Electrical engineering. Electronics. Nuclear engineering Wei Dang verfasserin aut Taichun Qin verfasserin aut Zeming Zhang verfasserin aut Congmin Lv verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 23430-23441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:23430-23441 https://doi.org/10.1109/ACCESS.2019.2899624 kostenfrei https://doaj.org/article/00c91a3a567541cea4223e022e314cc4 kostenfrei https://ieeexplore.ieee.org/document/8642871/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 23430-23441 |
allfieldsGer |
10.1109/ACCESS.2019.2899624 doi (DE-627)DOAJ049808788 (DE-599)DOAJ00c91a3a567541cea4223e022e314cc4 DE-627 ger DE-627 rakwb eng TK1-9971 Peng Li verfasserin aut A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. Semiconductor device modeling degradation reliability engineering space radiation uncertainty Electrical engineering. Electronics. Nuclear engineering Wei Dang verfasserin aut Taichun Qin verfasserin aut Zeming Zhang verfasserin aut Congmin Lv verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 23430-23441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:23430-23441 https://doi.org/10.1109/ACCESS.2019.2899624 kostenfrei https://doaj.org/article/00c91a3a567541cea4223e022e314cc4 kostenfrei https://ieeexplore.ieee.org/document/8642871/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 23430-23441 |
allfieldsSound |
10.1109/ACCESS.2019.2899624 doi (DE-627)DOAJ049808788 (DE-599)DOAJ00c91a3a567541cea4223e022e314cc4 DE-627 ger DE-627 rakwb eng TK1-9971 Peng Li verfasserin aut A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. Semiconductor device modeling degradation reliability engineering space radiation uncertainty Electrical engineering. Electronics. Nuclear engineering Wei Dang verfasserin aut Taichun Qin verfasserin aut Zeming Zhang verfasserin aut Congmin Lv verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 23430-23441 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:23430-23441 https://doi.org/10.1109/ACCESS.2019.2899624 kostenfrei https://doaj.org/article/00c91a3a567541cea4223e022e314cc4 kostenfrei https://ieeexplore.ieee.org/document/8642871/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 23430-23441 |
language |
English |
source |
In IEEE Access 7(2019), Seite 23430-23441 volume:7 year:2019 pages:23430-23441 |
sourceStr |
In IEEE Access 7(2019), Seite 23430-23441 volume:7 year:2019 pages:23430-23441 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Semiconductor device modeling degradation reliability engineering space radiation uncertainty Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Peng Li @@aut@@ Wei Dang @@aut@@ Taichun Qin @@aut@@ Zeming Zhang @@aut@@ Congmin Lv @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ049808788 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049808788</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308145258.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2899624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049808788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ00c91a3a567541cea4223e022e314cc4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor device modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Dang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taichun Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeming Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Congmin Lv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 23430-23441</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:23430-23441</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2899624</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/00c91a3a567541cea4223e022e314cc4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8642871/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">23430-23441</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Peng Li |
spellingShingle |
Peng Li misc TK1-9971 misc Semiconductor device modeling misc degradation misc reliability engineering misc space radiation misc uncertainty misc Electrical engineering. Electronics. Nuclear engineering A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application |
authorStr |
Peng Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application Semiconductor device modeling degradation reliability engineering space radiation uncertainty |
topic |
misc TK1-9971 misc Semiconductor device modeling misc degradation misc reliability engineering misc space radiation misc uncertainty misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Semiconductor device modeling misc degradation misc reliability engineering misc space radiation misc uncertainty misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Semiconductor device modeling misc degradation misc reliability engineering misc space radiation misc uncertainty misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application |
ctrlnum |
(DE-627)DOAJ049808788 (DE-599)DOAJ00c91a3a567541cea4223e022e314cc4 |
title_full |
A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application |
author_sort |
Peng Li |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
23430 |
author_browse |
Peng Li Wei Dang Taichun Qin Zeming Zhang Congmin Lv |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Peng Li |
doi_str_mv |
10.1109/ACCESS.2019.2899624 |
author2-role |
verfasserin |
title_sort |
competing risk model of reliability analysis for nand-based ssds in space application |
callnumber |
TK1-9971 |
title_auth |
A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application |
abstract |
This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. |
abstractGer |
This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. |
abstract_unstemmed |
This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application |
url |
https://doi.org/10.1109/ACCESS.2019.2899624 https://doaj.org/article/00c91a3a567541cea4223e022e314cc4 https://ieeexplore.ieee.org/document/8642871/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Wei Dang Taichun Qin Zeming Zhang Congmin Lv |
author2Str |
Wei Dang Taichun Qin Zeming Zhang Congmin Lv |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2899624 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:53:52.173Z |
_version_ |
1803607796272332800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049808788</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308145258.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2899624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049808788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ00c91a3a567541cea4223e022e314cc4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Competing Risk Model of Reliability Analysis for NAND-Based SSDs in Space Application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a competing risk model to simultaneously analyze censored catastrophic failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two dominant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross section to model the accelerated censored data. The hard failure model is presented based on the invariance principle of total environmental particles' energy. On the other hand, soft degradation is described by the nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability concerning the inherent variability of the degradation process over time and the unit-to-unit variability in degradation rates are both taken into account. Then, we derive the reliability functions and other quantities of interest under normal conditions with the assumption of independence of failure modes. Furthermore, to estimate the unknown parameters in the competing risk model, the transformed extreme value regression analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally, a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a sensitivity analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor device modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Dang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taichun Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeming Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Congmin Lv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 23430-23441</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:23430-23441</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2899624</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/00c91a3a567541cea4223e022e314cc4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8642871/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">23430-23441</subfield></datafield></record></collection>
|
score |
7.400714 |