Research of acquisition and prediction method in early weak information of locomotive traction system
Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure...
Ausführliche Beschreibung
Autor*in: |
Bin Ren [verfasserIn] Siwen Li [verfasserIn] Shaopu Yang [verfasserIn] Wentao Song [verfasserIn] Yonggang Jiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
dynamic cascade empirical mode decomposition |
---|
Übergeordnetes Werk: |
In: The Journal of Engineering - Wiley, 2013, (2019) |
---|---|
Übergeordnetes Werk: |
year:2019 |
Links: |
---|
DOI / URN: |
10.1049/joe.2018.9058 |
---|
Katalog-ID: |
DOAJ049915126 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ049915126 | ||
003 | DE-627 | ||
005 | 20230308145848.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1049/joe.2018.9058 |2 doi | |
035 | |a (DE-627)DOAJ049915126 | ||
035 | |a (DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Bin Ren |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research of acquisition and prediction method in early weak information of locomotive traction system |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. | ||
650 | 4 | |a locomotives | |
650 | 4 | |a feature extraction | |
650 | 4 | |a fault diagnosis | |
650 | 4 | |a gears | |
650 | 4 | |a different time scale | |
650 | 4 | |a fault features | |
650 | 4 | |a uncertain factors | |
650 | 4 | |a dynamic cascade empirical mode decomposition | |
650 | 4 | |a characteristic frequency acquisition | |
650 | 4 | |a inhibition mode mixing | |
650 | 4 | |a locomotive gear | |
650 | 4 | |a early period | |
650 | 4 | |a fault deterioration | |
650 | 4 | |a weak failures | |
650 | 4 | |a crash | |
650 | 4 | |a economic loss | |
650 | 4 | |a failure period | |
650 | 4 | |a mechanical equipment | |
650 | 4 | |a locomotive traction system | |
650 | 4 | |a early weak information | |
650 | 4 | |a prediction method | |
650 | 4 | |a early fault prognosis | |
650 | 4 | |a weak faults | |
650 | 4 | |a envelope solution method | |
650 | 4 | |a optimal intrinsic mode function acquisition | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Siwen Li |e verfasserin |4 aut | |
700 | 0 | |a Shaopu Yang |e verfasserin |4 aut | |
700 | 0 | |a Wentao Song |e verfasserin |4 aut | |
700 | 0 | |a Yonggang Jiao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Journal of Engineering |d Wiley, 2013 |g (2019) |w (DE-627)75682270X |w (DE-600)2727074-9 |x 20513305 |7 nnns |
773 | 1 | 8 | |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.1049/joe.2018.9058 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc |z kostenfrei |
856 | 4 | 0 | |u https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2051-3305 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2019 |
author_variant |
b r br s l sl s y sy w s ws y j yj |
---|---|
matchkey_str |
article:20513305:2019----::eerhfcustoadrdcinehdnalwaifrainfo |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.1049/joe.2018.9058 doi (DE-627)DOAJ049915126 (DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc DE-627 ger DE-627 rakwb eng TA1-2040 Bin Ren verfasserin aut Research of acquisition and prediction method in early weak information of locomotive traction system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. locomotives feature extraction fault diagnosis gears different time scale fault features uncertain factors dynamic cascade empirical mode decomposition characteristic frequency acquisition inhibition mode mixing locomotive gear early period fault deterioration weak failures crash economic loss failure period mechanical equipment locomotive traction system early weak information prediction method early fault prognosis weak faults envelope solution method optimal intrinsic mode function acquisition Engineering (General). Civil engineering (General) Siwen Li verfasserin aut Shaopu Yang verfasserin aut Wentao Song verfasserin aut Yonggang Jiao verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.9058 kostenfrei https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
spelling |
10.1049/joe.2018.9058 doi (DE-627)DOAJ049915126 (DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc DE-627 ger DE-627 rakwb eng TA1-2040 Bin Ren verfasserin aut Research of acquisition and prediction method in early weak information of locomotive traction system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. locomotives feature extraction fault diagnosis gears different time scale fault features uncertain factors dynamic cascade empirical mode decomposition characteristic frequency acquisition inhibition mode mixing locomotive gear early period fault deterioration weak failures crash economic loss failure period mechanical equipment locomotive traction system early weak information prediction method early fault prognosis weak faults envelope solution method optimal intrinsic mode function acquisition Engineering (General). Civil engineering (General) Siwen Li verfasserin aut Shaopu Yang verfasserin aut Wentao Song verfasserin aut Yonggang Jiao verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.9058 kostenfrei https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfields_unstemmed |
10.1049/joe.2018.9058 doi (DE-627)DOAJ049915126 (DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc DE-627 ger DE-627 rakwb eng TA1-2040 Bin Ren verfasserin aut Research of acquisition and prediction method in early weak information of locomotive traction system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. locomotives feature extraction fault diagnosis gears different time scale fault features uncertain factors dynamic cascade empirical mode decomposition characteristic frequency acquisition inhibition mode mixing locomotive gear early period fault deterioration weak failures crash economic loss failure period mechanical equipment locomotive traction system early weak information prediction method early fault prognosis weak faults envelope solution method optimal intrinsic mode function acquisition Engineering (General). Civil engineering (General) Siwen Li verfasserin aut Shaopu Yang verfasserin aut Wentao Song verfasserin aut Yonggang Jiao verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.9058 kostenfrei https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsGer |
10.1049/joe.2018.9058 doi (DE-627)DOAJ049915126 (DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc DE-627 ger DE-627 rakwb eng TA1-2040 Bin Ren verfasserin aut Research of acquisition and prediction method in early weak information of locomotive traction system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. locomotives feature extraction fault diagnosis gears different time scale fault features uncertain factors dynamic cascade empirical mode decomposition characteristic frequency acquisition inhibition mode mixing locomotive gear early period fault deterioration weak failures crash economic loss failure period mechanical equipment locomotive traction system early weak information prediction method early fault prognosis weak faults envelope solution method optimal intrinsic mode function acquisition Engineering (General). Civil engineering (General) Siwen Li verfasserin aut Shaopu Yang verfasserin aut Wentao Song verfasserin aut Yonggang Jiao verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.9058 kostenfrei https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsSound |
10.1049/joe.2018.9058 doi (DE-627)DOAJ049915126 (DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc DE-627 ger DE-627 rakwb eng TA1-2040 Bin Ren verfasserin aut Research of acquisition and prediction method in early weak information of locomotive traction system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. locomotives feature extraction fault diagnosis gears different time scale fault features uncertain factors dynamic cascade empirical mode decomposition characteristic frequency acquisition inhibition mode mixing locomotive gear early period fault deterioration weak failures crash economic loss failure period mechanical equipment locomotive traction system early weak information prediction method early fault prognosis weak faults envelope solution method optimal intrinsic mode function acquisition Engineering (General). Civil engineering (General) Siwen Li verfasserin aut Shaopu Yang verfasserin aut Wentao Song verfasserin aut Yonggang Jiao verfasserin aut In The Journal of Engineering Wiley, 2013 (2019) (DE-627)75682270X (DE-600)2727074-9 20513305 nnns year:2019 https://doi.org/10.1049/joe.2018.9058 kostenfrei https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc kostenfrei https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058 kostenfrei https://doaj.org/toc/2051-3305 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
language |
English |
source |
In The Journal of Engineering (2019) year:2019 |
sourceStr |
In The Journal of Engineering (2019) year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
locomotives feature extraction fault diagnosis gears different time scale fault features uncertain factors dynamic cascade empirical mode decomposition characteristic frequency acquisition inhibition mode mixing locomotive gear early period fault deterioration weak failures crash economic loss failure period mechanical equipment locomotive traction system early weak information prediction method early fault prognosis weak faults envelope solution method optimal intrinsic mode function acquisition Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
The Journal of Engineering |
authorswithroles_txt_mv |
Bin Ren @@aut@@ Siwen Li @@aut@@ Shaopu Yang @@aut@@ Wentao Song @@aut@@ Yonggang Jiao @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
75682270X |
id |
DOAJ049915126 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049915126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308145848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/joe.2018.9058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049915126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research of acquisition and prediction method in early weak information of locomotive traction system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">locomotives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gears</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">different time scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertain factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic cascade empirical mode decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristic frequency acquisition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhibition mode mixing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">locomotive gear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early period</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault deterioration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weak failures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">failure period</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical equipment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">locomotive traction system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early weak information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prediction method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early fault prognosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weak faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">envelope solution method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal intrinsic mode function acquisition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siwen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaopu Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonggang Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Journal of Engineering</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)75682270X</subfield><subfield code="w">(DE-600)2727074-9</subfield><subfield code="x">20513305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/joe.2018.9058</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Bin Ren |
spellingShingle |
Bin Ren misc TA1-2040 misc locomotives misc feature extraction misc fault diagnosis misc gears misc different time scale misc fault features misc uncertain factors misc dynamic cascade empirical mode decomposition misc characteristic frequency acquisition misc inhibition mode mixing misc locomotive gear misc early period misc fault deterioration misc weak failures misc crash misc economic loss misc failure period misc mechanical equipment misc locomotive traction system misc early weak information misc prediction method misc early fault prognosis misc weak faults misc envelope solution method misc optimal intrinsic mode function acquisition misc Engineering (General). Civil engineering (General) Research of acquisition and prediction method in early weak information of locomotive traction system |
authorStr |
Bin Ren |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)75682270X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20513305 |
topic_title |
TA1-2040 Research of acquisition and prediction method in early weak information of locomotive traction system locomotives feature extraction fault diagnosis gears different time scale fault features uncertain factors dynamic cascade empirical mode decomposition characteristic frequency acquisition inhibition mode mixing locomotive gear early period fault deterioration weak failures crash economic loss failure period mechanical equipment locomotive traction system early weak information prediction method early fault prognosis weak faults envelope solution method optimal intrinsic mode function acquisition |
topic |
misc TA1-2040 misc locomotives misc feature extraction misc fault diagnosis misc gears misc different time scale misc fault features misc uncertain factors misc dynamic cascade empirical mode decomposition misc characteristic frequency acquisition misc inhibition mode mixing misc locomotive gear misc early period misc fault deterioration misc weak failures misc crash misc economic loss misc failure period misc mechanical equipment misc locomotive traction system misc early weak information misc prediction method misc early fault prognosis misc weak faults misc envelope solution method misc optimal intrinsic mode function acquisition misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc locomotives misc feature extraction misc fault diagnosis misc gears misc different time scale misc fault features misc uncertain factors misc dynamic cascade empirical mode decomposition misc characteristic frequency acquisition misc inhibition mode mixing misc locomotive gear misc early period misc fault deterioration misc weak failures misc crash misc economic loss misc failure period misc mechanical equipment misc locomotive traction system misc early weak information misc prediction method misc early fault prognosis misc weak faults misc envelope solution method misc optimal intrinsic mode function acquisition misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc locomotives misc feature extraction misc fault diagnosis misc gears misc different time scale misc fault features misc uncertain factors misc dynamic cascade empirical mode decomposition misc characteristic frequency acquisition misc inhibition mode mixing misc locomotive gear misc early period misc fault deterioration misc weak failures misc crash misc economic loss misc failure period misc mechanical equipment misc locomotive traction system misc early weak information misc prediction method misc early fault prognosis misc weak faults misc envelope solution method misc optimal intrinsic mode function acquisition misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Journal of Engineering |
hierarchy_parent_id |
75682270X |
hierarchy_top_title |
The Journal of Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)75682270X (DE-600)2727074-9 |
title |
Research of acquisition and prediction method in early weak information of locomotive traction system |
ctrlnum |
(DE-627)DOAJ049915126 (DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc |
title_full |
Research of acquisition and prediction method in early weak information of locomotive traction system |
author_sort |
Bin Ren |
journal |
The Journal of Engineering |
journalStr |
The Journal of Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Bin Ren Siwen Li Shaopu Yang Wentao Song Yonggang Jiao |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Bin Ren |
doi_str_mv |
10.1049/joe.2018.9058 |
author2-role |
verfasserin |
title_sort |
research of acquisition and prediction method in early weak information of locomotive traction system |
callnumber |
TA1-2040 |
title_auth |
Research of acquisition and prediction method in early weak information of locomotive traction system |
abstract |
Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. |
abstractGer |
Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. |
abstract_unstemmed |
Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Research of acquisition and prediction method in early weak information of locomotive traction system |
url |
https://doi.org/10.1049/joe.2018.9058 https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058 https://doaj.org/toc/2051-3305 |
remote_bool |
true |
author2 |
Siwen Li Shaopu Yang Wentao Song Yonggang Jiao |
author2Str |
Siwen Li Shaopu Yang Wentao Song Yonggang Jiao |
ppnlink |
75682270X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1049/joe.2018.9058 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T01:19:21.996Z |
_version_ |
1803609400409063424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ049915126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308145848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/joe.2018.9058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ049915126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ328a527d155046ba95ee2ccc4e25fccc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research of acquisition and prediction method in early weak information of locomotive traction system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many key parts of mechanical equipment gradually enter failure period with service, and failures happen in some of them, it will lead to serious consequences with economic loss and crash of machine and death of human if weak failures cannot be identified in time, which might degrade to major failure. It would be of benefit to prevent the fault deterioration if faults could be identified in early period, with the states of key parts obtained. Locomotive gear was chosen as the research object here, a method of inhibition mode mixing and characteristic frequency acquisition based on dynamic cascade empirical mode decomposition is put forward for the weakness and aliasing out of uncertain factors. The fault features are much more obviously presented in different time scale by optimal intrinsic mode function (IMF) acquisition and the improvement of envelope solution method. The results of experiment show that weak faults can be obtained under much noise, and an effective method is provided for early fault prognosis and diagnosis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">locomotives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gears</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">different time scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertain factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic cascade empirical mode decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristic frequency acquisition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhibition mode mixing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">locomotive gear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early period</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault deterioration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weak failures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">failure period</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical equipment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">locomotive traction system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early weak information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prediction method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early fault prognosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weak faults</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">envelope solution method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimal intrinsic mode function acquisition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siwen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaopu Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonggang Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Journal of Engineering</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)75682270X</subfield><subfield code="w">(DE-600)2727074-9</subfield><subfield code="x">20513305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/joe.2018.9058</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/328a527d155046ba95ee2ccc4e25fccc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9058</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-3305</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.4013395 |